Cargando…

α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies

Knee injury increases the risk of developing knee osteoarthritis (OA). Recent evidence suggests involvement of oxidative stress induced by inflammation and bleeding in the joint. This study investigates the role in this process of α(1)-microglobulin (A1M), a plasma and tissue antioxidant protein wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Larsson, Staffan, Åkerström, Bo, Gram, Magnus, Lohmander, L. Stefan, Struglics, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250851/
https://www.ncbi.nlm.nih.gov/pubmed/30505280
http://dx.doi.org/10.3389/fphys.2018.01596
_version_ 1783372992635469824
author Larsson, Staffan
Åkerström, Bo
Gram, Magnus
Lohmander, L. Stefan
Struglics, André
author_facet Larsson, Staffan
Åkerström, Bo
Gram, Magnus
Lohmander, L. Stefan
Struglics, André
author_sort Larsson, Staffan
collection PubMed
description Knee injury increases the risk of developing knee osteoarthritis (OA). Recent evidence suggests involvement of oxidative stress induced by inflammation and bleeding in the joint. This study investigates the role in this process of α(1)-microglobulin (A1M), a plasma and tissue antioxidant protein with reducing function, and heme- and radical-binding properties. We studied matched knee synovial fluid (sf) and serum (s) samples from 122 subjects (mean age 40 years, 31% females): 10 were knee healthy references, 13 had acute inflammatory arthritis (AIA), 79 knee injury 0–10 years prior to sampling, and 20 knee OA. Using immunoassays, we measured sf-A1M and s-A1M, sf-hemoglobin (sf-Hb), sf-total free heme (sf-Heme), and sf-carbonyl groups (sf-Carbonyl). We explored associations by partial correlation, or linear regression models with adjustments for age, sex and diagnosis, and evaluated diagnostic capacity by area under the receiver operator characteristics curve (AUC). The AIA group had 1.2- to 1.7-fold higher sf-A1M and s-A1M concentrations compared to the other diagnostic groups; other biomarkers showed no between-group differences. sf-A1M and s-A1M were with AUC of 0.76 and 0.78, respectively, diagnostic for AIA. In the injury group, the amount of bleeding in the joint was inversely correlated to time after injury when measured as sf-Heme (r = -0.41, p < 0.001), but not when measured as sf-Hb (r = -0.19, p = 0.098). A similar inverse association with time after injury was noted for sf-A1M (r = -0.30, p = 0.007), but not for s-A1M and sf-Carbonyl. Linear regression models showed that sf-Heme was more strongly associated with sf-A1M and sf-Carbonyl than sf-Hb. Independent of diagnosis, sf-Heme explained 5.7% of the variability in sf-A1M and 3.0% in the variability in sf-Carbonyl, but appeared unrelated to s-A1M. High sf-A1M and low sf-Heme or sf-Hb were independently associated with low sf-Carbonyl. In conclusion, our results demonstrate that independent of disease, Hb and heme within a knee joint correlates with an increased sf-A1M concentration that appears to be protective of oxidative damage, i.e., a reduction in carbonyl groups. High concentrations of A1M in synovial fluid and serum was further diagnostic for AIA.
format Online
Article
Text
id pubmed-6250851
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-62508512018-11-30 α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies Larsson, Staffan Åkerström, Bo Gram, Magnus Lohmander, L. Stefan Struglics, André Front Physiol Physiology Knee injury increases the risk of developing knee osteoarthritis (OA). Recent evidence suggests involvement of oxidative stress induced by inflammation and bleeding in the joint. This study investigates the role in this process of α(1)-microglobulin (A1M), a plasma and tissue antioxidant protein with reducing function, and heme- and radical-binding properties. We studied matched knee synovial fluid (sf) and serum (s) samples from 122 subjects (mean age 40 years, 31% females): 10 were knee healthy references, 13 had acute inflammatory arthritis (AIA), 79 knee injury 0–10 years prior to sampling, and 20 knee OA. Using immunoassays, we measured sf-A1M and s-A1M, sf-hemoglobin (sf-Hb), sf-total free heme (sf-Heme), and sf-carbonyl groups (sf-Carbonyl). We explored associations by partial correlation, or linear regression models with adjustments for age, sex and diagnosis, and evaluated diagnostic capacity by area under the receiver operator characteristics curve (AUC). The AIA group had 1.2- to 1.7-fold higher sf-A1M and s-A1M concentrations compared to the other diagnostic groups; other biomarkers showed no between-group differences. sf-A1M and s-A1M were with AUC of 0.76 and 0.78, respectively, diagnostic for AIA. In the injury group, the amount of bleeding in the joint was inversely correlated to time after injury when measured as sf-Heme (r = -0.41, p < 0.001), but not when measured as sf-Hb (r = -0.19, p = 0.098). A similar inverse association with time after injury was noted for sf-A1M (r = -0.30, p = 0.007), but not for s-A1M and sf-Carbonyl. Linear regression models showed that sf-Heme was more strongly associated with sf-A1M and sf-Carbonyl than sf-Hb. Independent of diagnosis, sf-Heme explained 5.7% of the variability in sf-A1M and 3.0% in the variability in sf-Carbonyl, but appeared unrelated to s-A1M. High sf-A1M and low sf-Heme or sf-Hb were independently associated with low sf-Carbonyl. In conclusion, our results demonstrate that independent of disease, Hb and heme within a knee joint correlates with an increased sf-A1M concentration that appears to be protective of oxidative damage, i.e., a reduction in carbonyl groups. High concentrations of A1M in synovial fluid and serum was further diagnostic for AIA. Frontiers Media S.A. 2018-11-16 /pmc/articles/PMC6250851/ /pubmed/30505280 http://dx.doi.org/10.3389/fphys.2018.01596 Text en Copyright © 2018 Larsson, Åkerström, Gram, Lohmander and Struglics. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Larsson, Staffan
Åkerström, Bo
Gram, Magnus
Lohmander, L. Stefan
Struglics, André
α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies
title α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies
title_full α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies
title_fullStr α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies
title_full_unstemmed α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies
title_short α(1)-Microglobulin Protects Against Bleeding-Induced Oxidative Damage in Knee Arthropathies
title_sort α(1)-microglobulin protects against bleeding-induced oxidative damage in knee arthropathies
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6250851/
https://www.ncbi.nlm.nih.gov/pubmed/30505280
http://dx.doi.org/10.3389/fphys.2018.01596
work_keys_str_mv AT larssonstaffan a1microglobulinprotectsagainstbleedinginducedoxidativedamageinkneearthropathies
AT akerstrombo a1microglobulinprotectsagainstbleedinginducedoxidativedamageinkneearthropathies
AT grammagnus a1microglobulinprotectsagainstbleedinginducedoxidativedamageinkneearthropathies
AT lohmanderlstefan a1microglobulinprotectsagainstbleedinginducedoxidativedamageinkneearthropathies
AT struglicsandre a1microglobulinprotectsagainstbleedinginducedoxidativedamageinkneearthropathies