Cargando…
Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite
BACKGROUND: Tsetse fly-borne trypanosomiasis remains a significant problem in Africa despite years of interventions and research. The need for new strategies to control and possibly eliminate trypanosomiasis cannot be over-emphasized. Entomopathogenic fungi (EPF) infect their hosts through the cutic...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251101/ https://www.ncbi.nlm.nih.gov/pubmed/30470175 http://dx.doi.org/10.1186/s12866-018-1277-6 |
_version_ | 1783373046391767040 |
---|---|
author | Wamiti, Lawrence G Khamis, Fathiya M Abd-alla, Adly M M Ombura, Fidelis L O Akutse, Komivi S Subramanian, Sevgan Odiwuor, Samuel O Ochieng, Shem J Ekesi, Sunday Maniania, Nguya K |
author_facet | Wamiti, Lawrence G Khamis, Fathiya M Abd-alla, Adly M M Ombura, Fidelis L O Akutse, Komivi S Subramanian, Sevgan Odiwuor, Samuel O Ochieng, Shem J Ekesi, Sunday Maniania, Nguya K |
author_sort | Wamiti, Lawrence G |
collection | PubMed |
description | BACKGROUND: Tsetse fly-borne trypanosomiasis remains a significant problem in Africa despite years of interventions and research. The need for new strategies to control and possibly eliminate trypanosomiasis cannot be over-emphasized. Entomopathogenic fungi (EPF) infect their hosts through the cuticle and proliferate within the body of the host causing death in about 3–14 days depending on the concentration. During the infection process, EPF can reduce blood feeding abilities in hematophagous arthropods such as mosquitoes, tsetse flies and ticks, which may subsequently impact the development and transmission of parasites. Here, we report on the effects of infection of tsetse fly (Glossina fuscipes fuscipes) by the EPF, Metarhizium anisopliae ICIPE 30 wild-type strain (WT) and green fluorescent protein-transformed strain (GZP-1) on the ability of the flies to harbor and transmit the parasite, Trypanosoma congolense. RESULTS: Teneral flies were fed T. congolense-infected blood for 2 h and then infected using velvet carpet fabric impregnated with conidia covered inside a cylindrical plastic tube for 12 h. Control flies were fed with T. congolense-infected blood but not exposed to the fungal treatment via the carpet fabric inside a cylindrical plastic tube. Insects were dissected at 2, 3, 5 and 7 days post-fungal exposure and the density of parasites quantified. Parasite load decreased from 8.7 × 10(7) at day 2 to between 8.3 × 10(4) and 1.3 × 10(5) T. congolense ml(− 1) at day 3 post-fungal exposure in fungus-treated (WT and GZP-1) fly groups. When T. congolense-infected flies were exposed to either fungal strain, they did not transmit the parasite to mice whereas control treatment flies remained capable of parasite transmission. Furthermore, M. anisopliae-inoculated flies which fed on T. congolense-infected mice were not able to acquire the parasites at 4 days post-fungal exposure while parasite acquisition was observed in the control treatment during the same period. CONCLUSIONS: Infection of the vector G. f. fuscipes by the entomopathogenic fungus M. anisopliae negatively affected the multiplication of the parasite T. congolense in the fly and reduced the vectorial capacity to acquire or transmit the parasite. |
format | Online Article Text |
id | pubmed-6251101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62511012018-11-26 Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite Wamiti, Lawrence G Khamis, Fathiya M Abd-alla, Adly M M Ombura, Fidelis L O Akutse, Komivi S Subramanian, Sevgan Odiwuor, Samuel O Ochieng, Shem J Ekesi, Sunday Maniania, Nguya K BMC Microbiol Research BACKGROUND: Tsetse fly-borne trypanosomiasis remains a significant problem in Africa despite years of interventions and research. The need for new strategies to control and possibly eliminate trypanosomiasis cannot be over-emphasized. Entomopathogenic fungi (EPF) infect their hosts through the cuticle and proliferate within the body of the host causing death in about 3–14 days depending on the concentration. During the infection process, EPF can reduce blood feeding abilities in hematophagous arthropods such as mosquitoes, tsetse flies and ticks, which may subsequently impact the development and transmission of parasites. Here, we report on the effects of infection of tsetse fly (Glossina fuscipes fuscipes) by the EPF, Metarhizium anisopliae ICIPE 30 wild-type strain (WT) and green fluorescent protein-transformed strain (GZP-1) on the ability of the flies to harbor and transmit the parasite, Trypanosoma congolense. RESULTS: Teneral flies were fed T. congolense-infected blood for 2 h and then infected using velvet carpet fabric impregnated with conidia covered inside a cylindrical plastic tube for 12 h. Control flies were fed with T. congolense-infected blood but not exposed to the fungal treatment via the carpet fabric inside a cylindrical plastic tube. Insects were dissected at 2, 3, 5 and 7 days post-fungal exposure and the density of parasites quantified. Parasite load decreased from 8.7 × 10(7) at day 2 to between 8.3 × 10(4) and 1.3 × 10(5) T. congolense ml(− 1) at day 3 post-fungal exposure in fungus-treated (WT and GZP-1) fly groups. When T. congolense-infected flies were exposed to either fungal strain, they did not transmit the parasite to mice whereas control treatment flies remained capable of parasite transmission. Furthermore, M. anisopliae-inoculated flies which fed on T. congolense-infected mice were not able to acquire the parasites at 4 days post-fungal exposure while parasite acquisition was observed in the control treatment during the same period. CONCLUSIONS: Infection of the vector G. f. fuscipes by the entomopathogenic fungus M. anisopliae negatively affected the multiplication of the parasite T. congolense in the fly and reduced the vectorial capacity to acquire or transmit the parasite. BioMed Central 2018-11-23 /pmc/articles/PMC6251101/ /pubmed/30470175 http://dx.doi.org/10.1186/s12866-018-1277-6 Text en © International Atomic Energy Agency; licensee BioMed Central Ltd. 2018 This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by/3.0/igo/) which permits unrestricted use, distribution, and reproduction in any medium, provided appropriate credit to the original author(s) and the source is given. |
spellingShingle | Research Wamiti, Lawrence G Khamis, Fathiya M Abd-alla, Adly M M Ombura, Fidelis L O Akutse, Komivi S Subramanian, Sevgan Odiwuor, Samuel O Ochieng, Shem J Ekesi, Sunday Maniania, Nguya K Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
title | Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
title_full | Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
title_fullStr | Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
title_full_unstemmed | Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
title_short | Metarhizium anisopliae infection reduces Trypanosoma congolense reproduction in Glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
title_sort | metarhizium anisopliae infection reduces trypanosoma congolense reproduction in glossina fuscipes fuscipes and its ability to acquire or transmit the parasite |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251101/ https://www.ncbi.nlm.nih.gov/pubmed/30470175 http://dx.doi.org/10.1186/s12866-018-1277-6 |
work_keys_str_mv | AT wamitilawrenceg metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT khamisfathiyam metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT abdallaadlymm metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT omburafidelislo metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT akutsekomivis metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT subramaniansevgan metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT odiwuorsamuelo metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT ochiengshemj metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT ekesisunday metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite AT manianianguyak metarhiziumanisopliaeinfectionreducestrypanosomacongolensereproductioninglossinafuscipesfuscipesanditsabilitytoacquireortransmittheparasite |