Cargando…
Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells
OBJECTIVE(S): Breast cancer remains a global challenge, and further chemopreventive therapies are still immediately required. Emerging evidence has revealed the potent anti-cancer effects of biguanides, Metformin (MET) and phenformin (PHE). Thus, to explore an efficient chemopreventive strategy for...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mashhad University of Medical Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251396/ https://www.ncbi.nlm.nih.gov/pubmed/30483391 http://dx.doi.org/10.22038/IJBMS.2018.30460.7345 |
_version_ | 1783373116161916928 |
---|---|
author | Jafari-Gharabaghlou, Davoud Pilehvar-Soltanahmadi, Younes Dadashpour, Mehdi Mota, Ali Vafajouy-Jamshidi, Soheila Faramarzi, Leila Rasouli, Sara Zarghami, Nosratollah |
author_facet | Jafari-Gharabaghlou, Davoud Pilehvar-Soltanahmadi, Younes Dadashpour, Mehdi Mota, Ali Vafajouy-Jamshidi, Soheila Faramarzi, Leila Rasouli, Sara Zarghami, Nosratollah |
author_sort | Jafari-Gharabaghlou, Davoud |
collection | PubMed |
description | OBJECTIVE(S): Breast cancer remains a global challenge, and further chemopreventive therapies are still immediately required. Emerging evidence has revealed the potent anti-cancer effects of biguanides, Metformin (MET) and phenformin (PHE). Thus, to explore an efficient chemopreventive strategy for breast cancer, the antiproliferative effects of the combination of MET and PHE against breast cancer cells were assessed. MATERIALS AND METHODS: Cytotoxicity of the drugs individually and in combination against T47D and MDA-MB-231 breast cancer cells were assessed using MTT assay and the median-effect method was used to analyze the precise nature of the interaction between MET and PHE. Besides, the expression levels of hTERT after 48 hr drug exposure were determined using qRT-PCR. RESULTS: Based on the cytotoxicity assay, both MET and PHE further inhibited the growth of MDA-MB-231 cells compared with T47D cells. It was found that MET+PHE reduced the IC50s of MET and PHE in both cells drastically more than the single treatments in a synergistic manner. Importantly, MET+PHE showed higher antiproliferative effect with smaller IC50 values against MDA-MB-231 cells than against T47D cells. Real-time PCR results revealed that hTERT expression was significantly reduced in both breast cancer cell lines treated with MET+PHE than the single treatments. In comparison between two types of breast cancer cells, it was detected that MET+PHE could further decline hTERT expression in MDA-MB-231cells than in T47D cells (P<0.001). CONCLUSION: It is speculated that the combination of MET and PHE may be a promising and convenient approach to improve the efficiency of breast cancer treatment.speculated that the combination of MET and PHE may be a promising and convenient approach to improve the efficiency of breast cancer treatment. |
format | Online Article Text |
id | pubmed-6251396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Mashhad University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-62513962018-11-27 Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells Jafari-Gharabaghlou, Davoud Pilehvar-Soltanahmadi, Younes Dadashpour, Mehdi Mota, Ali Vafajouy-Jamshidi, Soheila Faramarzi, Leila Rasouli, Sara Zarghami, Nosratollah Iran J Basic Med Sci Original Article OBJECTIVE(S): Breast cancer remains a global challenge, and further chemopreventive therapies are still immediately required. Emerging evidence has revealed the potent anti-cancer effects of biguanides, Metformin (MET) and phenformin (PHE). Thus, to explore an efficient chemopreventive strategy for breast cancer, the antiproliferative effects of the combination of MET and PHE against breast cancer cells were assessed. MATERIALS AND METHODS: Cytotoxicity of the drugs individually and in combination against T47D and MDA-MB-231 breast cancer cells were assessed using MTT assay and the median-effect method was used to analyze the precise nature of the interaction between MET and PHE. Besides, the expression levels of hTERT after 48 hr drug exposure were determined using qRT-PCR. RESULTS: Based on the cytotoxicity assay, both MET and PHE further inhibited the growth of MDA-MB-231 cells compared with T47D cells. It was found that MET+PHE reduced the IC50s of MET and PHE in both cells drastically more than the single treatments in a synergistic manner. Importantly, MET+PHE showed higher antiproliferative effect with smaller IC50 values against MDA-MB-231 cells than against T47D cells. Real-time PCR results revealed that hTERT expression was significantly reduced in both breast cancer cell lines treated with MET+PHE than the single treatments. In comparison between two types of breast cancer cells, it was detected that MET+PHE could further decline hTERT expression in MDA-MB-231cells than in T47D cells (P<0.001). CONCLUSION: It is speculated that the combination of MET and PHE may be a promising and convenient approach to improve the efficiency of breast cancer treatment.speculated that the combination of MET and PHE may be a promising and convenient approach to improve the efficiency of breast cancer treatment. Mashhad University of Medical Sciences 2018-11 /pmc/articles/PMC6251396/ /pubmed/30483391 http://dx.doi.org/10.22038/IJBMS.2018.30460.7345 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Jafari-Gharabaghlou, Davoud Pilehvar-Soltanahmadi, Younes Dadashpour, Mehdi Mota, Ali Vafajouy-Jamshidi, Soheila Faramarzi, Leila Rasouli, Sara Zarghami, Nosratollah Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells |
title | Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells |
title_full | Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells |
title_fullStr | Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells |
title_full_unstemmed | Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells |
title_short | Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells |
title_sort | combination of metformin and phenformin synergistically inhibits proliferation and htert expression in human breast cancer cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251396/ https://www.ncbi.nlm.nih.gov/pubmed/30483391 http://dx.doi.org/10.22038/IJBMS.2018.30460.7345 |
work_keys_str_mv | AT jafarigharabaghloudavoud combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT pilehvarsoltanahmadiyounes combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT dadashpourmehdi combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT motaali combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT vafajouyjamshidisoheila combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT faramarzileila combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT rasoulisara combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells AT zarghaminosratollah combinationofmetforminandphenforminsynergisticallyinhibitsproliferationandhtertexpressioninhumanbreastcancercells |