Cargando…

Antimicrobial Compounds Effective against Candidatus Liberibacter asiaticus Discovered via Graft-based Assay in Citrus

Huanglongbing (HLB), the most destructive citrus disease, is caused by three species of phloem-limited Candidatus Liberibacter. Chemical control is a critical short-term strategy against Candidatus Liberibacter asiaticus (Las). Currently, application of antibiotics in agricultural practices is limit...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Chuanyu, Zhong, Yun, Powell, Charles A., Doud, Melissa S., Duan, Yongping, Huang, Youzong, Zhang, Muqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251869/
https://www.ncbi.nlm.nih.gov/pubmed/30470774
http://dx.doi.org/10.1038/s41598-018-35461-w
Descripción
Sumario:Huanglongbing (HLB), the most destructive citrus disease, is caused by three species of phloem-limited Candidatus Liberibacter. Chemical control is a critical short-term strategy against Candidatus Liberibacter asiaticus (Las). Currently, application of antibiotics in agricultural practices is limited due to public concerns regarding emergence of antibiotic-resistant bacteria and potential side effects in humans. The present study screened 39 antimicrobials (non-antibiotics) for effectiveness against Las using an optimized graft-based screening system. Results of principal component, hierarchical clustering and membership function analyses demonstrated that 39 antimicrobials were clustered into three groups: “effective” (Group I), “partly effective” (Group II), and “ineffective” (Group III). Despite different modes of action, 8 antimicrobials (aluminum hydroxide, D,L-buthionine sulfoximine, nicotine, surfactin from Bacillus subtilis, SilverDYNE, colloidal silver, EBI-601, and EBI-602), were all as highly effective at eliminating or suppressing Las, showing both the lowest Las infection rates and titers in treated scions and inoculated rootstock. The ineffective group, which included 21 antimicrobials, did not eliminate or suppress Las, resulting in plants with increased titers of Candidatus Liberibacter. The other 10 antimicrobials partly eliminated/suppressed Las in treated and graft-inoculated plants. These effective antimicrobials are potential candidates for HLB control either via rescuing infected citrus germplasms or restricted field application.