Cargando…
Energy landscape underlying spontaneous insertion and folding of an alpha-helical transmembrane protein into a bilayer
Membrane protein folding mechanisms and rates are notoriously hard to determine. A recent force spectroscopy study of the folding of an α-helical membrane protein, GlpG, showed that the folded state has a very high kinetic stability and a relatively low thermodynamic stability. Here, we simulate the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251876/ https://www.ncbi.nlm.nih.gov/pubmed/30470737 http://dx.doi.org/10.1038/s41467-018-07320-9 |
Sumario: | Membrane protein folding mechanisms and rates are notoriously hard to determine. A recent force spectroscopy study of the folding of an α-helical membrane protein, GlpG, showed that the folded state has a very high kinetic stability and a relatively low thermodynamic stability. Here, we simulate the spontaneous insertion and folding of GlpG into a bilayer. An energy landscape analysis of the simulations suggests that GlpG folds via sequential insertion of helical hairpins. The rate-limiting step involves simultaneous insertion and folding of the final helical hairpin. The striking features of GlpG’s experimentally measured landscape can therefore be explained by a partially inserted metastable state, which leads us to a reinterpretation of the rates measured by force spectroscopy. Our results are consistent with the helical hairpin hypothesis but call into question the two-stage model of membrane protein folding as a general description of folding mechanisms in the presence of bilayers. |
---|