Cargando…

Transcriptomic profiling of tantalum metal implant osseointegration in osteopenic patients

OBJECTIVES: The long-term success of dental implants is established by literature. Although clinically well defined, the complex genetic pathways underlying osseointegration have not yet been fully elucidated. Furthermore, patients with osteopenia/osteoporosis are considered to present as higher ris...

Descripción completa

Detalles Bibliográficos
Autores principales: Hefni, E. K., Bencharit, S., Kim, S. J., Byrd, K. M., Moreli, T., Nociti, F. H., Offenbacher, S., Barros, S. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251902/
https://www.ncbi.nlm.nih.gov/pubmed/30479835
http://dx.doi.org/10.1038/s41405-018-0004-6
Descripción
Sumario:OBJECTIVES: The long-term success of dental implants is established by literature. Although clinically well defined, the complex genetic pathways underlying osseointegration have not yet been fully elucidated. Furthermore, patients with osteopenia/osteoporosis are considered to present as higher risk for implant failure. Porous tantalum trabecular metal (PTTM), an open-cell porous biomaterial, is suggested to present enhanced biocompatibility and osteoconductivity. The goal of this study was to evaluate the expression patterns of a panel of genes closely associated with osteogenesis and wound healing in osteopenic patients receiving either traditional titanium (Ti) or PTTM cylinders to assess the pathway of genes activation in the early phases of osseointegration. MATERIAL AND METHODS: Implant cylinders made of Ti and PTTM were placed in osteopenic volunteers. At 2- and 4 weeks of healing, one Ti and one PTTM cylinder were removed from each subject for RT-PCR analysis using osteogenesis PCR array. RESULTS: Compared to Ti, PTTM-associated bone displayed upregulation of bone matrix proteins, BMP/TGF tisuperfamily, soluble ligand and integrin receptors, growth factors, and collagen genes at one or both time points. Histologically, PTTM implants displayed more robust osteogenesis deposition and maturity when compared to Ti implants from the same patient. CONCLUSIONS: Our results indicate that PTTM properties could induce an earlier activation of genes associated with osteogenesis in osteopenic patients suggesting that PTTM implants may attenuate the relative risk of placing dental implants in this population.