Cargando…
Feature Ranking in Predictive Models for Hospital-Acquired Acute Kidney Injury
Acute Kidney Injury (AKI) is a common complication encountered among hospitalized patients, imposing significantly increased cost, morbidity, and mortality. Early prediction of AKI has profound clinical implications because currently no treatment exists for AKI once it develops. Feature selection (F...
Autores principales: | Wu, Lijuan, Hu, Yong, Liu, Xiaoxiao, Zhang, Xiangzhou, Chen, Weiqi, Yu, Alan S. L., Kellum, John A., Waitman, Lemuel R., Liu, Mei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251919/ https://www.ncbi.nlm.nih.gov/pubmed/30470779 http://dx.doi.org/10.1038/s41598-018-35487-0 |
Ejemplares similares
-
Changing relative risk of clinical factors for hospital-acquired acute kidney injury across age groups: a retrospective cohort study
por: Wu, Lijuan, et al.
Publicado: (2020) -
Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records
por: He, Jianqin, et al.
Publicado: (2018) -
Causal risk factor discovery for severe acute kidney injury using electronic health records
por: Chen, Weiqi, et al.
Publicado: (2018) -
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
por: Song, Xing, et al.
Publicado: (2020) -
Development and Validation of a Personalized Model With Transfer Learning for Acute Kidney Injury Risk Estimation Using Electronic Health Records
por: Liu, Kang, et al.
Publicado: (2022)