Cargando…

Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation

Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates – features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yi, Zhuang, Tao-Tao, Fan, Fengjia, Voznyy, Oleksandr, Askerka, Mikhail, Zhu, Haiming, Wu, Liang, Liu, Guo-Qiang, Pan, Yun-Xiang, Sargent, Edward H., Yu, Shu-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251926/
https://www.ncbi.nlm.nih.gov/pubmed/30470752
http://dx.doi.org/10.1038/s41467-018-07422-4
_version_ 1783373175924457472
author Li, Yi
Zhuang, Tao-Tao
Fan, Fengjia
Voznyy, Oleksandr
Askerka, Mikhail
Zhu, Haiming
Wu, Liang
Liu, Guo-Qiang
Pan, Yun-Xiang
Sargent, Edward H.
Yu, Shu-Hong
author_facet Li, Yi
Zhuang, Tao-Tao
Fan, Fengjia
Voznyy, Oleksandr
Askerka, Mikhail
Zhu, Haiming
Wu, Liang
Liu, Guo-Qiang
Pan, Yun-Xiang
Sargent, Edward H.
Yu, Shu-Hong
author_sort Li, Yi
collection PubMed
description Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates – features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires – something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots.
format Online
Article
Text
id pubmed-6251926
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-62519262018-11-26 Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation Li, Yi Zhuang, Tao-Tao Fan, Fengjia Voznyy, Oleksandr Askerka, Mikhail Zhu, Haiming Wu, Liang Liu, Guo-Qiang Pan, Yun-Xiang Sargent, Edward H. Yu, Shu-Hong Nat Commun Article Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates – features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires – something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots. Nature Publishing Group UK 2018-11-23 /pmc/articles/PMC6251926/ /pubmed/30470752 http://dx.doi.org/10.1038/s41467-018-07422-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Li, Yi
Zhuang, Tao-Tao
Fan, Fengjia
Voznyy, Oleksandr
Askerka, Mikhail
Zhu, Haiming
Wu, Liang
Liu, Guo-Qiang
Pan, Yun-Xiang
Sargent, Edward H.
Yu, Shu-Hong
Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
title Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
title_full Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
title_fullStr Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
title_full_unstemmed Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
title_short Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
title_sort pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251926/
https://www.ncbi.nlm.nih.gov/pubmed/30470752
http://dx.doi.org/10.1038/s41467-018-07422-4
work_keys_str_mv AT liyi pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT zhuangtaotao pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT fanfengjia pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT voznyyoleksandr pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT askerkamikhail pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT zhuhaiming pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT wuliang pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT liuguoqiang pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT panyunxiang pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT sargentedwardh pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation
AT yushuhong pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation