Cargando…
Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation
Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates – features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251926/ https://www.ncbi.nlm.nih.gov/pubmed/30470752 http://dx.doi.org/10.1038/s41467-018-07422-4 |
_version_ | 1783373175924457472 |
---|---|
author | Li, Yi Zhuang, Tao-Tao Fan, Fengjia Voznyy, Oleksandr Askerka, Mikhail Zhu, Haiming Wu, Liang Liu, Guo-Qiang Pan, Yun-Xiang Sargent, Edward H. Yu, Shu-Hong |
author_facet | Li, Yi Zhuang, Tao-Tao Fan, Fengjia Voznyy, Oleksandr Askerka, Mikhail Zhu, Haiming Wu, Liang Liu, Guo-Qiang Pan, Yun-Xiang Sargent, Edward H. Yu, Shu-Hong |
author_sort | Li, Yi |
collection | PubMed |
description | Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates – features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires – something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots. |
format | Online Article Text |
id | pubmed-6251926 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-62519262018-11-26 Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation Li, Yi Zhuang, Tao-Tao Fan, Fengjia Voznyy, Oleksandr Askerka, Mikhail Zhu, Haiming Wu, Liang Liu, Guo-Qiang Pan, Yun-Xiang Sargent, Edward H. Yu, Shu-Hong Nat Commun Article Epitaxially stacking colloidal quantum dots in nanowires offers a route to selective passivation of defective facets while simultaneously enabling charge transfer to molecular adsorbates – features that must be combined to achieve high-efficiency photocatalysts. This requires dynamical switching of precursors to grow, alternatingly, the quantum dots and nanowires – something not readily implemented in conventional flask-based solution chemistry. Here we report pulsed axial epitaxy, a growth mode that enables the stacking of multiple CdS quantum dots in ZnS nanowires. The approach relies on the energy difference of incorporating these semiconductor atoms into the host catalyst, which determines the nucleation sequence at the catalyst-nanowire interface. This flexible synthetic strategy allows precise modulation of quantum dot size, number, spacing, and crystal phase. The facet-selective passivation of quantum dots in nanowires opens a pathway to photocatalyst engineering: we report photocatalysts that exhibit an order-of-magnitude higher photocatalytic hydrogen evolution rates than do plain CdS quantum dots. Nature Publishing Group UK 2018-11-23 /pmc/articles/PMC6251926/ /pubmed/30470752 http://dx.doi.org/10.1038/s41467-018-07422-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Li, Yi Zhuang, Tao-Tao Fan, Fengjia Voznyy, Oleksandr Askerka, Mikhail Zhu, Haiming Wu, Liang Liu, Guo-Qiang Pan, Yun-Xiang Sargent, Edward H. Yu, Shu-Hong Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
title | Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
title_full | Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
title_fullStr | Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
title_full_unstemmed | Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
title_short | Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
title_sort | pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6251926/ https://www.ncbi.nlm.nih.gov/pubmed/30470752 http://dx.doi.org/10.1038/s41467-018-07422-4 |
work_keys_str_mv | AT liyi pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT zhuangtaotao pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT fanfengjia pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT voznyyoleksandr pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT askerkamikhail pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT zhuhaiming pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT wuliang pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT liuguoqiang pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT panyunxiang pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT sargentedwardh pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation AT yushuhong pulsedaxialepitaxyofcolloidalquantumdotsinnanowiresenablesfacetselectivepassivation |