Cargando…
Classification of the glioma grading using radiomics analysis
BACKGROUND: Grading of gliomas is critical information related to prognosis and survival. We aimed to apply a radiomics approach using various machine learning classifiers to determine the glioma grading. METHODS: We considered 285 (high grade n = 210, low grade n = 75) cases obtained from the Brain...
Autores principales: | Cho, Hwan-ho, Lee, Seung-hak, Kim, Jonghoon, Park, Hyunjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6252243/ https://www.ncbi.nlm.nih.gov/pubmed/30498643 http://dx.doi.org/10.7717/peerj.5982 |
Ejemplares similares
-
Role of diffusional kurtosis imaging in grading of brain gliomas: a protocol for systematic review and meta-analysis
por: Abdalla, Gehad, et al.
Publicado: (2018) -
Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review
por: Lee, Seung-Hak, et al.
Publicado: (2020) -
Are radiomics features universally applicable to different organs?
por: Lee, Seung-Hak, et al.
Publicado: (2021) -
Awake Surgery With Visual Pathway Mapping in Low Grade Glioma Surgery
por: Sangrador-Deitos, Marcos V, et al.
Publicado: (2022) -
Observing deep radiomics for the classification of glioma grades
por: Kobayashi, Kazuma, et al.
Publicado: (2021)