Cargando…

1376. Antifungal Activity of Cerium Nitrate Against Fungal Isolates Associated with Combat-Related Injuries Including Burns

BACKGROUND: Fungal infections are a critical cause of morbidity and mortality in burn patients. In addition to debridement and systemic antifungal therapy, various topical adjuncts have been used, and topical burn care is a key component of infection prevention and treatment. Cerium nitrate (CN) has...

Descripción completa

Detalles Bibliográficos
Autores principales: Pomerantz, Heather, Beckius, Miriam, Blyth, Dana, Akers, Kevin S, Tribble, David R, Mende, Katrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6252473/
http://dx.doi.org/10.1093/ofid/ofy210.1207
Descripción
Sumario:BACKGROUND: Fungal infections are a critical cause of morbidity and mortality in burn patients. In addition to debridement and systemic antifungal therapy, various topical adjuncts have been used, and topical burn care is a key component of infection prevention and treatment. Cerium nitrate (CN) has been used in combination with silver sulfadiazine (SS) in burn care. Previous studies showed that CN had bacteriostatic activity, and suggested anti-biofilm activity against Candida biofilms. In this study, we evaluated the in vitro activity of CN against fungal isolates associated with combat-related injuries. METHODS: The efficacy of CN was evaluated against 14 mold (three Aspergillus spp., two Fusarium spp., five different mucormycetes, two Bipolaris spp., one Alternaria spp., one Exophiala spp.) and 21 Candida spp. isolates collected as part of the Trauma Infectious Disease Outcomes Study. Fungicidal activity of various concentrations of CN (2.2%, 1%, 0.5% and 0.2%) was determined using an established time-kill assay. Standard conidia/cell suspensions were prepared according to Clinical and Laboratory Standards Institute guidelines and then exposed to the CN solutions for 24 hours. At different times (0, 5, 15, 30 minutes, 1, 1.5, 3, 6, 12, and 24 hours) aliquots were plated and incubated at 35ºC. Colony forming unit (CFU) counts were determined after 24 hours incubation or after an appropriate time for slow growing molds. RESULTS: All mold isolates had persistent growth at 24 hours with most having no significant change in colony counts over the 24-hour period. The only exception was Mucor circinelloides, which appeared to have a time-dependent reduction in CFUs at 24 hours for all CN concentrations. Exophiala did not grow as well in CN solutions compared with the control (mean 65 vs. 28.2 CFUs with a difference of mean 37.4 CFUs, P = 0.0001), but this was not time or concentration dependent. All yeast species showed a time-dependent killing after 6–12 hours. CONCLUSION: CN demonstrated time-dependent killing of the yeasts. However, very little activity was observed against the tested molds. Since CN is often used in combination with SS there might be a synergistic effect against molds. Further research will evaluate higher concentrations of CN and its toxicity for cells and tissue. DISCLOSURES: All authors: No reported disclosures.