Cargando…

1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)

BACKGROUND: BB-related infections are a major public health problem, as they are notoriously refractory to current treatments. One of the defining characteristics of BBs is the extracellular polymeric substance (EPS). Extracellular DNA and the bacterial DNABII family of proteins are key components o...

Descripción completa

Detalles Bibliográficos
Autores principales: Katragkou, Aspasia, Warren, Lauren, Buzzo, John, Goodman, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6252871/
http://dx.doi.org/10.1093/ofid/ofy209.110
_version_ 1783373364790820864
author Katragkou, Aspasia
Warren, Lauren
Buzzo, John
Goodman, Steven
author_facet Katragkou, Aspasia
Warren, Lauren
Buzzo, John
Goodman, Steven
author_sort Katragkou, Aspasia
collection PubMed
description BACKGROUND: BB-related infections are a major public health problem, as they are notoriously refractory to current treatments. One of the defining characteristics of BBs is the extracellular polymeric substance (EPS). Extracellular DNA and the bacterial DNABII family of proteins are key components of EPS and are crucial for BBs structural integrity. It is known that targeting DNABII proteins disrupts BBs. We hypothesized that HMGB1, a DNA-binding eukaryotic protein, could affect BBs as it binds to the same DNA structures as the DNABII proteins. HMGB1 is comprised of 3 domains, A Box, B Box, and C tail, all of which have different functions. We aimed to determine in vitro the effects of HMGB1 and its individual domains against BBs. METHODS: Klebsiella pneumoniae (KP), a common cause of nosocomial infections, was used for all BBs disruption assays. Human recombinant full-length HMGB1 (rHMGB1; 1–215), a C45S mutation variant (mHMGB1) and the HMGB1 domains A Box (1–89), B Box (90–176), AB Boxes (1–176), B-linker Box (80–179), and B-linker Box C106S were expressed (in E. coli) and purified to >95%. To evaluate the effect of rHMGB1 and the various domains on established BBs, each protein species (200 nM) was added to preformed BBs at 24 hours. At 40 hours the BBs were washed, stained with LIVE/DEAD®, visualized via confocal laser scanning microscopy and images were analyzed by COMSTAT to calculate average thickness and biomass. RESULTS: Exogenous rHMGB1 and its individual domains, with the exception of A Box caused a significant reduction (P < 0.05) in average thickness (AT) and biomass (BM) of KP biofilms when compared with untreated KP biofilms (% reduction mean ± SE in AT: 44% ± 0.33, 75% ± 0.04, 63% ± 0.1, 77% ± 0.03, 64% ± 0.08, 54% ± 0.15 and in BM: 61% ± 0.01, 80% ± 0.01, 68% ± 0.02, 67% ± 0.01, 73% ± 0.02, 56% ± 0.02 induced by rHMGB1, mHMGB1, B-Box, B-linker Box, AB Boxes, and B-linker Box C106S, respectively). CONCLUSION: Full-length recombinant HMGB1 was able to significantly disrupt established KP biofilms as were all truncated HMGB1 forms containing the B Box domain and could potentially be used as a therapeutic treatment for BB-related infections. DISCLOSURES: J. Buzzo, ProclaRx: Collaborator, Research support. S. Goodman, ProclaRx: Collaborator and Scientific Advisor, Research support.
format Online
Article
Text
id pubmed-6252871
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-62528712018-11-28 1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs) Katragkou, Aspasia Warren, Lauren Buzzo, John Goodman, Steven Open Forum Infect Dis Abstracts BACKGROUND: BB-related infections are a major public health problem, as they are notoriously refractory to current treatments. One of the defining characteristics of BBs is the extracellular polymeric substance (EPS). Extracellular DNA and the bacterial DNABII family of proteins are key components of EPS and are crucial for BBs structural integrity. It is known that targeting DNABII proteins disrupts BBs. We hypothesized that HMGB1, a DNA-binding eukaryotic protein, could affect BBs as it binds to the same DNA structures as the DNABII proteins. HMGB1 is comprised of 3 domains, A Box, B Box, and C tail, all of which have different functions. We aimed to determine in vitro the effects of HMGB1 and its individual domains against BBs. METHODS: Klebsiella pneumoniae (KP), a common cause of nosocomial infections, was used for all BBs disruption assays. Human recombinant full-length HMGB1 (rHMGB1; 1–215), a C45S mutation variant (mHMGB1) and the HMGB1 domains A Box (1–89), B Box (90–176), AB Boxes (1–176), B-linker Box (80–179), and B-linker Box C106S were expressed (in E. coli) and purified to >95%. To evaluate the effect of rHMGB1 and the various domains on established BBs, each protein species (200 nM) was added to preformed BBs at 24 hours. At 40 hours the BBs were washed, stained with LIVE/DEAD®, visualized via confocal laser scanning microscopy and images were analyzed by COMSTAT to calculate average thickness and biomass. RESULTS: Exogenous rHMGB1 and its individual domains, with the exception of A Box caused a significant reduction (P < 0.05) in average thickness (AT) and biomass (BM) of KP biofilms when compared with untreated KP biofilms (% reduction mean ± SE in AT: 44% ± 0.33, 75% ± 0.04, 63% ± 0.1, 77% ± 0.03, 64% ± 0.08, 54% ± 0.15 and in BM: 61% ± 0.01, 80% ± 0.01, 68% ± 0.02, 67% ± 0.01, 73% ± 0.02, 56% ± 0.02 induced by rHMGB1, mHMGB1, B-Box, B-linker Box, AB Boxes, and B-linker Box C106S, respectively). CONCLUSION: Full-length recombinant HMGB1 was able to significantly disrupt established KP biofilms as were all truncated HMGB1 forms containing the B Box domain and could potentially be used as a therapeutic treatment for BB-related infections. DISCLOSURES: J. Buzzo, ProclaRx: Collaborator, Research support. S. Goodman, ProclaRx: Collaborator and Scientific Advisor, Research support. Oxford University Press 2018-11-26 /pmc/articles/PMC6252871/ http://dx.doi.org/10.1093/ofid/ofy209.110 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Infectious Diseases Society of America. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Abstracts
Katragkou, Aspasia
Warren, Lauren
Buzzo, John
Goodman, Steven
1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)
title 1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)
title_full 1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)
title_fullStr 1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)
title_full_unstemmed 1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)
title_short 1640. Toward New Anti-Biofilm Therapies: High Mobility Group Box 1 (HMGB1) Protein and Its Structural Variants Can Be Used to Disrupt Bacterial Biofilms (BBs)
title_sort 1640. toward new anti-biofilm therapies: high mobility group box 1 (hmgb1) protein and its structural variants can be used to disrupt bacterial biofilms (bbs)
topic Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6252871/
http://dx.doi.org/10.1093/ofid/ofy209.110
work_keys_str_mv AT katragkouaspasia 1640towardnewantibiofilmtherapieshighmobilitygroupbox1hmgb1proteinanditsstructuralvariantscanbeusedtodisruptbacterialbiofilmsbbs
AT warrenlauren 1640towardnewantibiofilmtherapieshighmobilitygroupbox1hmgb1proteinanditsstructuralvariantscanbeusedtodisruptbacterialbiofilmsbbs
AT buzzojohn 1640towardnewantibiofilmtherapieshighmobilitygroupbox1hmgb1proteinanditsstructuralvariantscanbeusedtodisruptbacterialbiofilmsbbs
AT goodmansteven 1640towardnewantibiofilmtherapieshighmobilitygroupbox1hmgb1proteinanditsstructuralvariantscanbeusedtodisruptbacterialbiofilmsbbs