Cargando…
1765. Use of a Natural Language Processing-Based Informatics Pipeline for Infectious Disease Syndrome Surveillance
BACKGROUND: Automated surveillance for infectious disease syndromes (IDS) in hospitals mostly relies on structured data (e.g., diagnosis codes). Natural language processing (NLP) enables screening and concept extraction from large repositories of unstructured data (e.g., clinician notes). We demonst...
Autores principales: | Zachariah, Philip, Hill-Ricciuti, Alexandra, Natarajan, Karthik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6253153/ http://dx.doi.org/10.1093/ofid/ofy209.150 |
Ejemplares similares
-
2303. Differential Effects on MRSA and MSSA Epidemiology in a Neonatal Intensive Care Unit (NICU) During a Year-Long Surveillance and Decolonization Effort
por: Zachariah, Philip, et al.
Publicado: (2018) -
Infectious Disease Informatics and Syndromic Surveillance
por: Zeng, Daniel, et al.
Publicado: (2008) -
Informatics & Surveillance in Global Health: Informatics Capacity for Zika Outbreak
por: Odongo, Wycliffe, et al.
Publicado: (2019) -
1765. Distribution of Rickettsia species among hospitalized cases and ticks in Pavlodar region, Kazakhstan, 2019
por: Bumburidi, Yekaterina V, et al.
Publicado: (2023) -
Reflections on the nature of genius: on the 300th anniversary of Mikhail Lomonosov (1711-1765)
por: Shiltsev, V
Publicado: (2012)