Cargando…
Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus
Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopepti...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254334/ https://www.ncbi.nlm.nih.gov/pubmed/30282804 http://dx.doi.org/10.1074/jbc.RA118.004857 |
_version_ | 1783373698840920064 |
---|---|
author | Jang, Song Yee Hwang, Jungwon Kim, Byoung Sik Lee, Eun-Young Oh, Byung-Ha Kim, Myung Hee |
author_facet | Jang, Song Yee Hwang, Jungwon Kim, Byoung Sik Lee, Eun-Young Oh, Byung-Ha Kim, Myung Hee |
author_sort | Jang, Song Yee |
collection | PubMed |
description | Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site–coordinating core β-sheet–containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes. |
format | Online Article Text |
id | pubmed-6254334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-62543342018-11-27 Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus Jang, Song Yee Hwang, Jungwon Kim, Byoung Sik Lee, Eun-Young Oh, Byung-Ha Kim, Myung Hee J Biol Chem Protein Structure and Folding Multifunctional autoprocessing repeats-in-toxin (MARTX) toxins are secreted by Gram-negative bacteria and function as primary virulence-promoting macromolecules that deliver multiple cytopathic and cytotoxic effector domains into the host cytoplasm. Among these effectors, Ras/Rap1-specific endopeptidase (RRSP) catalyzes the sequence-specific cleavage of the Switch I region of the cellular substrates Ras and Rap1 that are crucial for host innate immune defenses during infection. To dissect the molecular basis underpinning RRSP-mediated substrate inactivation, we determined the crystal structure of an RRSP from the sepsis-causing bacterial pathogen Vibrio vulnificus (VvRRSP). Structural and biochemical analyses revealed that VvRRSP is a metal-independent TIKI family endopeptidase composed of an N-terminal membrane-localization and substrate-recruitment domain (N lobe) connected via an inter-lobe linker to the C-terminal active site–coordinating core β-sheet–containing domain (C lobe). Structure-based mutagenesis identified the 2His/2Glu catalytic residues in the core catalytic domain that are shared with other TIKI family enzymes and that are essential for Ras processing. In vitro KRas cleavage assays disclosed that deleting the N lobe in VvRRSP causes complete loss of enzymatic activity. Endogenous Ras cleavage assays combined with confocal microscopy analysis of HEK293T cells indicated that the N lobe functions both in membrane localization via the first α-helix and in substrate assimilation by altering the functional conformation of the C lobe to facilitate recruitment of cellular substrates. Collectively, these results indicate that RRSP is a critical virulence factor that robustly inactivates Ras and Rap1 and augments the pathogenicity of invading bacteria via the combined effects of its N and C lobes. American Society for Biochemistry and Molecular Biology 2018-11-23 2018-10-03 /pmc/articles/PMC6254334/ /pubmed/30282804 http://dx.doi.org/10.1074/jbc.RA118.004857 Text en © 2018 Jang et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) . |
spellingShingle | Protein Structure and Folding Jang, Song Yee Hwang, Jungwon Kim, Byoung Sik Lee, Eun-Young Oh, Byung-Ha Kim, Myung Hee Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus |
title | Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus |
title_full | Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus |
title_fullStr | Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus |
title_full_unstemmed | Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus |
title_short | Structural basis of inactivation of Ras and Rap1 small GTPases by Ras/Rap1-specific endopeptidase from the sepsis-causing pathogen Vibrio vulnificus |
title_sort | structural basis of inactivation of ras and rap1 small gtpases by ras/rap1-specific endopeptidase from the sepsis-causing pathogen vibrio vulnificus |
topic | Protein Structure and Folding |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254334/ https://www.ncbi.nlm.nih.gov/pubmed/30282804 http://dx.doi.org/10.1074/jbc.RA118.004857 |
work_keys_str_mv | AT jangsongyee structuralbasisofinactivationofrasandrap1smallgtpasesbyrasrap1specificendopeptidasefromthesepsiscausingpathogenvibriovulnificus AT hwangjungwon structuralbasisofinactivationofrasandrap1smallgtpasesbyrasrap1specificendopeptidasefromthesepsiscausingpathogenvibriovulnificus AT kimbyoungsik structuralbasisofinactivationofrasandrap1smallgtpasesbyrasrap1specificendopeptidasefromthesepsiscausingpathogenvibriovulnificus AT leeeunyoung structuralbasisofinactivationofrasandrap1smallgtpasesbyrasrap1specificendopeptidasefromthesepsiscausingpathogenvibriovulnificus AT ohbyungha structuralbasisofinactivationofrasandrap1smallgtpasesbyrasrap1specificendopeptidasefromthesepsiscausingpathogenvibriovulnificus AT kimmyunghee structuralbasisofinactivationofrasandrap1smallgtpasesbyrasrap1specificendopeptidasefromthesepsiscausingpathogenvibriovulnificus |