Cargando…

Peptide Nucleic Acid Probe-Based Analysis as a New Detection Method for Clarithromycin Resistance in Helicobacter pylori

BACKGROUND/AIMS: Helicobacter pylori eradication rates are decreasing because of increases in clarithromycin resistance. Thus, finding an easy and accurate method of detecting clarithromycin resistance is important. METHODS: We evaluated 70 H. pylori isolates from Korean patients. Dual-labeled pepti...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Da Hyun, Kim, Jie-Hyun, Jeong, Su Jin, Park, Soon Young, Kang, Il-Mo, Lee, Kyoung Hwa, Song, Young Goo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial Office of Gut and Liver 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254629/
https://www.ncbi.nlm.nih.gov/pubmed/30037168
http://dx.doi.org/10.5009/gnl18111
Descripción
Sumario:BACKGROUND/AIMS: Helicobacter pylori eradication rates are decreasing because of increases in clarithromycin resistance. Thus, finding an easy and accurate method of detecting clarithromycin resistance is important. METHODS: We evaluated 70 H. pylori isolates from Korean patients. Dual-labeled peptide nucleic acid (PNA) probes were designed to detect resistance associated with point mutations in 23S ribosomal ribonucleic acid gene domain V (A2142G, A2143G, and T2182C). Data were analyzed by probe-based fluorescence melting curve analysis based on probe-target dissociation temperatures and compared with Sanger sequencing. RESULTS: Among 70 H. pylori isolates, 0, 16, and 58 isolates contained A2142G, A2143G, and T2182C mutations, respectively. PNA probe-based analysis exhibited 100.0% positive predictive values for A2142G and A2143G and a 98.3% positive predictive value for T2182C. PNA probe-based analysis results correlated with 98.6% of Sanger sequencing results (κ-value=0.990; standard error, 0.010). CONCLUSIONS: H. pylori clarithromycin resistance can be easily and accurately assessed by dual-labeled PNA probe-based melting curve analysis if probes are used based on the appropriate resistance-related mutations. This method is fast, simple, accurate, and adaptable for clinical samples. It may help clinicians choose a precise eradication regimen.