Cargando…
369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis
BACKGROUND: Early initiation of empiric antifungal therapy has been shown to decrease morbidity and mortality among patients with candidemia/invasive candidiasis (C/IC). However, the initiation of appropriate antifungal therapy is frequently delayed due to the severe limitations in early diagnosis....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254950/ http://dx.doi.org/10.1093/ofid/ofy210.380 |
_version_ | 1783373844494417920 |
---|---|
author | Rao, Arni Sr Srinivasa Vazquez, Jose Ostrosky-Zeichner, Luis |
author_facet | Rao, Arni Sr Srinivasa Vazquez, Jose Ostrosky-Zeichner, Luis |
author_sort | Rao, Arni Sr Srinivasa |
collection | PubMed |
description | BACKGROUND: Early initiation of empiric antifungal therapy has been shown to decrease morbidity and mortality among patients with candidemia/invasive candidiasis (C/IC). However, the initiation of appropriate antifungal therapy is frequently delayed due to the severe limitations in early diagnosis. The goal of this study is to develop a high-risk scoring system to identify patients who may be eligible for preemptive antifungal therapy. The proposed new methodology combines hybrid modeling and blockchain technology. METHODS: Our approach is novel and using expert physicians’ perception of C/IC risk factors with those described in the hospitals through a set of models (hybrid model building from primary and secondary data). The goal is to improve the early detection of C/IC and initiate antifungal therapy. Once candidate hybrid models are derived, blockchain technology will be utilized. The methodology is based on vectors consisting of the ranking of candidiasis risk factors. These vectors will be constructed based on expert clinicians rank scores of known risk factors. Such methods are different than the usual statistical rank correlation computations, such as Spearman’s rank correlation, etc RESULTS: Preliminary analysis suggests threepotential models. Model 1: uses the following order of variables, by their relative importance: (1) major surgery within 0–3 days, (2)TPN-7–3 days, (3) steroids 0–3 days, (4) ECMO, (5) hemodialysis 0–3 days, (6) diabetes mellitus. Model 2 includes: (1)multifocal Candida colonization, 2.) central venous catheter 0–3 days, (3) LVAD, (4) medical ICU, (5) APACHE score > 20, (6) mechanical ventilation. Model 3 includes (1) pancreatitis –710 days, (2) diabetes mellitus, (3) hemodialysis 0–3 days, (4) central venous catheter 0–3 days, (5) TPN-7–3 days, 6.) APACHE score > 20. CONCLUSION: Blockchain methods we propose are some of the first of their kind used in health research and are very suitable for the early detection of C/IC and other diseases where preemptive therapy is necessary. The following step will be to verify and use these models in the clinical realm and verify their effects on outcomes. Second we need to develop and evaluate our proposed methodology in building hybrid models, followed by algorithms for the early detection of diseases. These concepts still need to be fully evaluated on large population studies. DISCLOSURES: All authors: No reported disclosures. |
format | Online Article Text |
id | pubmed-6254950 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-62549502018-11-28 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis Rao, Arni Sr Srinivasa Vazquez, Jose Ostrosky-Zeichner, Luis Open Forum Infect Dis Abstracts BACKGROUND: Early initiation of empiric antifungal therapy has been shown to decrease morbidity and mortality among patients with candidemia/invasive candidiasis (C/IC). However, the initiation of appropriate antifungal therapy is frequently delayed due to the severe limitations in early diagnosis. The goal of this study is to develop a high-risk scoring system to identify patients who may be eligible for preemptive antifungal therapy. The proposed new methodology combines hybrid modeling and blockchain technology. METHODS: Our approach is novel and using expert physicians’ perception of C/IC risk factors with those described in the hospitals through a set of models (hybrid model building from primary and secondary data). The goal is to improve the early detection of C/IC and initiate antifungal therapy. Once candidate hybrid models are derived, blockchain technology will be utilized. The methodology is based on vectors consisting of the ranking of candidiasis risk factors. These vectors will be constructed based on expert clinicians rank scores of known risk factors. Such methods are different than the usual statistical rank correlation computations, such as Spearman’s rank correlation, etc RESULTS: Preliminary analysis suggests threepotential models. Model 1: uses the following order of variables, by their relative importance: (1) major surgery within 0–3 days, (2)TPN-7–3 days, (3) steroids 0–3 days, (4) ECMO, (5) hemodialysis 0–3 days, (6) diabetes mellitus. Model 2 includes: (1)multifocal Candida colonization, 2.) central venous catheter 0–3 days, (3) LVAD, (4) medical ICU, (5) APACHE score > 20, (6) mechanical ventilation. Model 3 includes (1) pancreatitis –710 days, (2) diabetes mellitus, (3) hemodialysis 0–3 days, (4) central venous catheter 0–3 days, (5) TPN-7–3 days, 6.) APACHE score > 20. CONCLUSION: Blockchain methods we propose are some of the first of their kind used in health research and are very suitable for the early detection of C/IC and other diseases where preemptive therapy is necessary. The following step will be to verify and use these models in the clinical realm and verify their effects on outcomes. Second we need to develop and evaluate our proposed methodology in building hybrid models, followed by algorithms for the early detection of diseases. These concepts still need to be fully evaluated on large population studies. DISCLOSURES: All authors: No reported disclosures. Oxford University Press 2018-11-26 /pmc/articles/PMC6254950/ http://dx.doi.org/10.1093/ofid/ofy210.380 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of Infectious Diseases Society of America. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Abstracts Rao, Arni Sr Srinivasa Vazquez, Jose Ostrosky-Zeichner, Luis 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis |
title | 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis |
title_full | 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis |
title_fullStr | 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis |
title_full_unstemmed | 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis |
title_short | 369. Using Hybrid Models and Blockchain Technology as a Means to Develop a Novel Propensity Score for Candidemia and Invasive Candidiasis |
title_sort | 369. using hybrid models and blockchain technology as a means to develop a novel propensity score for candidemia and invasive candidiasis |
topic | Abstracts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254950/ http://dx.doi.org/10.1093/ofid/ofy210.380 |
work_keys_str_mv | AT raoarnisrsrinivasa 369usinghybridmodelsandblockchaintechnologyasameanstodevelopanovelpropensityscoreforcandidemiaandinvasivecandidiasis AT vazquezjose 369usinghybridmodelsandblockchaintechnologyasameanstodevelopanovelpropensityscoreforcandidemiaandinvasivecandidiasis AT ostroskyzeichnerluis 369usinghybridmodelsandblockchaintechnologyasameanstodevelopanovelpropensityscoreforcandidemiaandinvasivecandidiasis |