Cargando…

Identification of FOXM1 as a specific marker for triple-negative breast cancer

The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)-associated pathway in triple-negative breast cancer (TNBC). Using a Cancer Landscapes-based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key po...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Yanli, Wang, Qixue, Xie, Yingbin, Qiao, Xiaoxia, Zhang, Shun, Wang, Yanan, Yang, Yongbin, Zhang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254995/
https://www.ncbi.nlm.nih.gov/pubmed/30365046
http://dx.doi.org/10.3892/ijo.2018.4598
_version_ 1783373854788288512
author Tan, Yanli
Wang, Qixue
Xie, Yingbin
Qiao, Xiaoxia
Zhang, Shun
Wang, Yanan
Yang, Yongbin
Zhang, Bo
author_facet Tan, Yanli
Wang, Qixue
Xie, Yingbin
Qiao, Xiaoxia
Zhang, Shun
Wang, Yanan
Yang, Yongbin
Zhang, Bo
author_sort Tan, Yanli
collection PubMed
description The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)-associated pathway in triple-negative breast cancer (TNBC). Using a Cancer Landscapes-based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key position in gene networks and is a critical regulatory gene in breast cancer. Using breast carcinoma gene expression data from The Cancer Genome Atlas, it was identified that FOXM1 expression was increased in the basal-like breast cancer subtype compared with other breast cancer subtypes. RNA-sequencing analysis of MDA-MB-231 cells treated with 4 and 10 µl/ml Thiostrepton identified 662 and 5,888 significantly differentially expressed genes, respectively. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that FOXM1 was highly associated with multiple biological processes and was markedly associated with metabolic pathways in TNBC. The use of Search Tool for the Retrieval of Interacting Genes/Proteins provided a critical assessment and integration of protein-protein interactions, and demonstrated the multiple important functions of FOXM1 in TNBC. Real-time cell analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to assess the anti-tumor activity of Thiostrepton in TNBC cells in vitro. The present results identified that suppression of FOXM1 using Thiostrepton inhibited MDA-MB-231 cell proliferation and the expression of cell cycle-associated genes, including cyclin A2, cyclin B2, checkpoint kinase 1, centrosomal protein 55 and polo like kinase 1. Immunofluorescence staining analysis demonstrated that vimentin, filamentous actin and zinc finger E-box-binding homeobox 1 were all decreased following treatment with Thiostrepton. Furthermore, a BALB/C nude mouse subcutaneous xenograft model was used to verify the function of FOXM1 in vivo. The present results demonstrated that FOXM1 inhibition significantly suppressed MDA-MB-231 cell tumorigenesis in vivo. Overall, the present results suggested that FOXM1 is a key gene that serves important roles in multiple biological processes in TNBC and that it may serve as a novel therapeutic target in TNBC.
format Online
Article
Text
id pubmed-6254995
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-62549952018-12-13 Identification of FOXM1 as a specific marker for triple-negative breast cancer Tan, Yanli Wang, Qixue Xie, Yingbin Qiao, Xiaoxia Zhang, Shun Wang, Yanan Yang, Yongbin Zhang, Bo Int J Oncol Articles The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)-associated pathway in triple-negative breast cancer (TNBC). Using a Cancer Landscapes-based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key position in gene networks and is a critical regulatory gene in breast cancer. Using breast carcinoma gene expression data from The Cancer Genome Atlas, it was identified that FOXM1 expression was increased in the basal-like breast cancer subtype compared with other breast cancer subtypes. RNA-sequencing analysis of MDA-MB-231 cells treated with 4 and 10 µl/ml Thiostrepton identified 662 and 5,888 significantly differentially expressed genes, respectively. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that FOXM1 was highly associated with multiple biological processes and was markedly associated with metabolic pathways in TNBC. The use of Search Tool for the Retrieval of Interacting Genes/Proteins provided a critical assessment and integration of protein-protein interactions, and demonstrated the multiple important functions of FOXM1 in TNBC. Real-time cell analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to assess the anti-tumor activity of Thiostrepton in TNBC cells in vitro. The present results identified that suppression of FOXM1 using Thiostrepton inhibited MDA-MB-231 cell proliferation and the expression of cell cycle-associated genes, including cyclin A2, cyclin B2, checkpoint kinase 1, centrosomal protein 55 and polo like kinase 1. Immunofluorescence staining analysis demonstrated that vimentin, filamentous actin and zinc finger E-box-binding homeobox 1 were all decreased following treatment with Thiostrepton. Furthermore, a BALB/C nude mouse subcutaneous xenograft model was used to verify the function of FOXM1 in vivo. The present results demonstrated that FOXM1 inhibition significantly suppressed MDA-MB-231 cell tumorigenesis in vivo. Overall, the present results suggested that FOXM1 is a key gene that serves important roles in multiple biological processes in TNBC and that it may serve as a novel therapeutic target in TNBC. D.A. Spandidos 2018-10-19 /pmc/articles/PMC6254995/ /pubmed/30365046 http://dx.doi.org/10.3892/ijo.2018.4598 Text en Copyright: © Tan et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Tan, Yanli
Wang, Qixue
Xie, Yingbin
Qiao, Xiaoxia
Zhang, Shun
Wang, Yanan
Yang, Yongbin
Zhang, Bo
Identification of FOXM1 as a specific marker for triple-negative breast cancer
title Identification of FOXM1 as a specific marker for triple-negative breast cancer
title_full Identification of FOXM1 as a specific marker for triple-negative breast cancer
title_fullStr Identification of FOXM1 as a specific marker for triple-negative breast cancer
title_full_unstemmed Identification of FOXM1 as a specific marker for triple-negative breast cancer
title_short Identification of FOXM1 as a specific marker for triple-negative breast cancer
title_sort identification of foxm1 as a specific marker for triple-negative breast cancer
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6254995/
https://www.ncbi.nlm.nih.gov/pubmed/30365046
http://dx.doi.org/10.3892/ijo.2018.4598
work_keys_str_mv AT tanyanli identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT wangqixue identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT xieyingbin identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT qiaoxiaoxia identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT zhangshun identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT wangyanan identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT yangyongbin identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer
AT zhangbo identificationoffoxm1asaspecificmarkerfortriplenegativebreastcancer