Cargando…

Adding Chemical Cross-Links to a Physical Hydrogel

Synergistic hydrogels are often encountered in polysaccharide mixtures widely used in food and biopharma products. The xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. Recently we showed that the junction zones stabilizing the 3D structure of this gel are p...

Descripción completa

Detalles Bibliográficos
Autores principales: Paradossi, Gaio, Finelli, Ivana, Cerroni, Barbara, Chiessi, Ester
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255106/
https://www.ncbi.nlm.nih.gov/pubmed/19783949
http://dx.doi.org/10.3390/molecules14093662
Descripción
Sumario:Synergistic hydrogels are often encountered in polysaccharide mixtures widely used in food and biopharma products. The xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. Recently we showed that the junction zones stabilizing the 3D structure of this gel are present as macromolecular complexes in solution formed by the partially depolymerised polysaccharidic chains. The non-covalent interactions stabilizing the structure of the polysaccharidic complex cause the melting of the ordered structure of the complex in the solution and of the hydrogels. Introduction of chemical cross-links in the 3D structure of the synergistic hydrogel removes this behaviour, adding new features to the swelling and to the viscoelastic properties of the cured hydrogel. The use of epichlorohydrin as low molecular weight cross-linker does not impact unfavourably on the viability of NIH 3T3 fibroblasts.