Cargando…
Criticality in tumor evolution and clinical outcome
How mutation and selection determine the fitness landscape of tumors and hence clinical outcome is an open fundamental question in cancer biology, crucial for the assessment of therapeutic strategies and resistance to treatment. Here we explore the mutation-selection phase diagram of 6,721 tumors re...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255199/ https://www.ncbi.nlm.nih.gov/pubmed/30404913 http://dx.doi.org/10.1073/pnas.1807256115 |
_version_ | 1783373894818725888 |
---|---|
author | Persi, Erez Wolf, Yuri I. Leiserson, Mark D. M. Koonin, Eugene V. Ruppin, Eytan |
author_facet | Persi, Erez Wolf, Yuri I. Leiserson, Mark D. M. Koonin, Eugene V. Ruppin, Eytan |
author_sort | Persi, Erez |
collection | PubMed |
description | How mutation and selection determine the fitness landscape of tumors and hence clinical outcome is an open fundamental question in cancer biology, crucial for the assessment of therapeutic strategies and resistance to treatment. Here we explore the mutation-selection phase diagram of 6,721 tumors representing 23 cancer types by quantifying the overall somatic point mutation load (ML) and selection (dN/dS) in the entire proteome of each tumor. We show that ML strongly correlates with patient survival, revealing two opposing regimes around a critical point. In low-ML cancers, a high number of mutations indicates poor prognosis, whereas high-ML cancers show the opposite trend, presumably due to mutational meltdown. Although the majority of cancers evolve near neutrality, deviations are observed at extreme MLs. Melanoma, with the highest ML, evolves under purifying selection, whereas in low-ML cancers, signatures of positive selection are observed, demonstrating how selection affects tumor fitness. Moreover, different cancers occupy specific positions on the ML–dN/dS plane, revealing a diversity of evolutionary trajectories. These results support and expand the theory of tumor evolution and its nonlinear effects on survival. |
format | Online Article Text |
id | pubmed-6255199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-62551992018-11-30 Criticality in tumor evolution and clinical outcome Persi, Erez Wolf, Yuri I. Leiserson, Mark D. M. Koonin, Eugene V. Ruppin, Eytan Proc Natl Acad Sci U S A PNAS Plus How mutation and selection determine the fitness landscape of tumors and hence clinical outcome is an open fundamental question in cancer biology, crucial for the assessment of therapeutic strategies and resistance to treatment. Here we explore the mutation-selection phase diagram of 6,721 tumors representing 23 cancer types by quantifying the overall somatic point mutation load (ML) and selection (dN/dS) in the entire proteome of each tumor. We show that ML strongly correlates with patient survival, revealing two opposing regimes around a critical point. In low-ML cancers, a high number of mutations indicates poor prognosis, whereas high-ML cancers show the opposite trend, presumably due to mutational meltdown. Although the majority of cancers evolve near neutrality, deviations are observed at extreme MLs. Melanoma, with the highest ML, evolves under purifying selection, whereas in low-ML cancers, signatures of positive selection are observed, demonstrating how selection affects tumor fitness. Moreover, different cancers occupy specific positions on the ML–dN/dS plane, revealing a diversity of evolutionary trajectories. These results support and expand the theory of tumor evolution and its nonlinear effects on survival. National Academy of Sciences 2018-11-20 2018-11-07 /pmc/articles/PMC6255199/ /pubmed/30404913 http://dx.doi.org/10.1073/pnas.1807256115 Text en Copyright © 2018 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Persi, Erez Wolf, Yuri I. Leiserson, Mark D. M. Koonin, Eugene V. Ruppin, Eytan Criticality in tumor evolution and clinical outcome |
title | Criticality in tumor evolution and clinical outcome |
title_full | Criticality in tumor evolution and clinical outcome |
title_fullStr | Criticality in tumor evolution and clinical outcome |
title_full_unstemmed | Criticality in tumor evolution and clinical outcome |
title_short | Criticality in tumor evolution and clinical outcome |
title_sort | criticality in tumor evolution and clinical outcome |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255199/ https://www.ncbi.nlm.nih.gov/pubmed/30404913 http://dx.doi.org/10.1073/pnas.1807256115 |
work_keys_str_mv | AT persierez criticalityintumorevolutionandclinicaloutcome AT wolfyurii criticalityintumorevolutionandclinicaloutcome AT leisersonmarkdm criticalityintumorevolutionandclinicaloutcome AT koonineugenev criticalityintumorevolutionandclinicaloutcome AT ruppineytan criticalityintumorevolutionandclinicaloutcome |