Cargando…
Deep Semi Supervised Generative Learning for Automated Tumor Proportion Scoring on NSCLC Tissue Needle Biopsies
The level of PD-L1 expression in immunohistochemistry (IHC) assays is a key biomarker for the identification of Non-Small-Cell-Lung-Cancer (NSCLC) patients that may respond to anti PD-1/PD-L1 treatments. The quantification of PD-L1 expression currently includes the visual estimation by a pathologist...
Autores principales: | Kapil, Ansh, Meier, Armin, Zuraw, Aleksandra, Steele, Keith E., Rebelatto, Marlon C., Schmidt, Günter, Brieu, Nicolas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255873/ https://www.ncbi.nlm.nih.gov/pubmed/30478349 http://dx.doi.org/10.1038/s41598-018-35501-5 |
Ejemplares similares
-
Automated image analysis of NSCLC biopsies to predict response to anti-PD-L1 therapy
por: Althammer, Sonja, et al.
Publicado: (2019) -
Semi-automated testing of proportional counters
por: Sangwine, S J
Publicado: (1980) -
Rule-Enhanced Active Learning for Semi-Automated Weak Supervision
por: Kartchner, David, et al.
Publicado: (2022) -
Retrieval Rate and Accuracy of Ultrasound-Guided 14-G Semi-Automated Core Needle Biopsy of Breast Microcalcifications
por: Yi, Jisook, et al.
Publicado: (2014) -
Effectiveness of Semi-Supervised Active Learning in Automated Wound Image Segmentation
por: Curti, Nico, et al.
Publicado: (2022)