Cargando…
The Virtual-Environment-Foraging Task enables rapid training and single-trial metrics of attention in head-fixed mice
Attention – the flexible allocation of processing resources based on behavioural demands – is essential to survival. Mouse research offers unique tools to dissect the underlying pathways, but is hampered by the difficulty of accurately measuring attention in mice. Current attention tasks for mice fa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6255915/ https://www.ncbi.nlm.nih.gov/pubmed/30478333 http://dx.doi.org/10.1038/s41598-018-34966-8 |
Sumario: | Attention – the flexible allocation of processing resources based on behavioural demands – is essential to survival. Mouse research offers unique tools to dissect the underlying pathways, but is hampered by the difficulty of accurately measuring attention in mice. Current attention tasks for mice face several limitations: Binary (hit/miss), temporally imprecise metrics, behavioural confounds and overtraining. Thus, despite the increasing scope of neuronal population measurements, insights are limited without equally precise behavioural measures. Here we present a virtual-environment task for head-fixed mice based on ‘foraging-like’ navigation. The task requires animals to discriminate gratings at orientation differences from 90° to 5°, and can be learned in only 3–5 sessions (<550 trials). It yields single-trial, non-binary metrics of response speed and accuracy, which generate secondary metrics of choice certainty, visual acuity, and most importantly, of sustained and cued attention – two attentional components studied extensively in humans. This allows us to examine single-trial dynamics of attention in mice, independently of confounds like rule learning. With this approach, we show that C57/BL6 mice have better visual acuity than previously measured, that they rhythmically alternate between states of high and low alertness, and that they can be prompted to adopt different performance strategies using minute changes in reward contingencies. |
---|