Cargando…
Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware
Spiking Neural Networks (SNNs) have high potential to process information efficiently with binary spikes and time delay information. Recently, dedicated SNN hardware accelerators with on-chip synapse memory array are gaining interest in overcoming the limitations of running software-based SNN in con...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256061/ https://www.ncbi.nlm.nih.gov/pubmed/30515074 http://dx.doi.org/10.3389/fnins.2018.00829 |
_version_ | 1783374070824304640 |
---|---|
author | Kim, Jinseok Koo, Jongeun Kim, Taesu Kim, Jae-Joon |
author_facet | Kim, Jinseok Koo, Jongeun Kim, Taesu Kim, Jae-Joon |
author_sort | Kim, Jinseok |
collection | PubMed |
description | Spiking Neural Networks (SNNs) have high potential to process information efficiently with binary spikes and time delay information. Recently, dedicated SNN hardware accelerators with on-chip synapse memory array are gaining interest in overcoming the limitations of running software-based SNN in conventional Von Neumann machines. In this paper, we proposed an efficient synapse memory structure to reduce the amount of hardware resource usage while maintaining performance and network size. In the proposed design, synapse memory size can be reduced by applying presynaptic weight scaling. In addition, axonal/neuronal offsets are applied to implement multiple layers on a single memory array. Finally, a transposable memory addressing scheme is presented for faster operation of spike-timing-dependent plasticity (STDP) learning. We implemented a SNN ASIC chip based on the proposed scheme with 65 nm CMOS technology. Chip measurement results showed that the proposed design provided up to 200X speedup over CPU while consuming 53 mW at 100 MHz with the energy efficiency of 15.2 pJ/SOP. |
format | Online Article Text |
id | pubmed-6256061 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62560612018-12-04 Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware Kim, Jinseok Koo, Jongeun Kim, Taesu Kim, Jae-Joon Front Neurosci Neuroscience Spiking Neural Networks (SNNs) have high potential to process information efficiently with binary spikes and time delay information. Recently, dedicated SNN hardware accelerators with on-chip synapse memory array are gaining interest in overcoming the limitations of running software-based SNN in conventional Von Neumann machines. In this paper, we proposed an efficient synapse memory structure to reduce the amount of hardware resource usage while maintaining performance and network size. In the proposed design, synapse memory size can be reduced by applying presynaptic weight scaling. In addition, axonal/neuronal offsets are applied to implement multiple layers on a single memory array. Finally, a transposable memory addressing scheme is presented for faster operation of spike-timing-dependent plasticity (STDP) learning. We implemented a SNN ASIC chip based on the proposed scheme with 65 nm CMOS technology. Chip measurement results showed that the proposed design provided up to 200X speedup over CPU while consuming 53 mW at 100 MHz with the energy efficiency of 15.2 pJ/SOP. Frontiers Media S.A. 2018-11-20 /pmc/articles/PMC6256061/ /pubmed/30515074 http://dx.doi.org/10.3389/fnins.2018.00829 Text en Copyright © 2018 Kim, Koo, Kim and Kim. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Kim, Jinseok Koo, Jongeun Kim, Taesu Kim, Jae-Joon Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware |
title | Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware |
title_full | Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware |
title_fullStr | Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware |
title_full_unstemmed | Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware |
title_short | Efficient Synapse Memory Structure for Reconfigurable Digital Neuromorphic Hardware |
title_sort | efficient synapse memory structure for reconfigurable digital neuromorphic hardware |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256061/ https://www.ncbi.nlm.nih.gov/pubmed/30515074 http://dx.doi.org/10.3389/fnins.2018.00829 |
work_keys_str_mv | AT kimjinseok efficientsynapsememorystructureforreconfigurabledigitalneuromorphichardware AT koojongeun efficientsynapsememorystructureforreconfigurabledigitalneuromorphichardware AT kimtaesu efficientsynapsememorystructureforreconfigurabledigitalneuromorphichardware AT kimjaejoon efficientsynapsememorystructureforreconfigurabledigitalneuromorphichardware |