Cargando…
Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway
Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256291/ https://www.ncbi.nlm.nih.gov/pubmed/30546425 http://dx.doi.org/10.3892/ol.2018.9518 |
_version_ | 1783374115876372480 |
---|---|
author | Zhou, Qinqin Zhang, Zhang Song, Liyan Huang, Chunhua Cheng, Qi Bi, Sixue Hu, Xianjing Yu, Rongmin |
author_facet | Zhou, Qinqin Zhang, Zhang Song, Liyan Huang, Chunhua Cheng, Qi Bi, Sixue Hu, Xianjing Yu, Rongmin |
author_sort | Zhou, Qinqin |
collection | PubMed |
description | Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and caused cell cycle arrest in the S phase. The published results also demonstrated that CMF-induced apoptosis was involved in mitochondrial dysfunction. The aim of the present study was to investigate the anti-invasion and anti-metastasis effects of CMF in NCI-H1299 and Lewis lung cancer (LLC) cell lines, which have high metastatic potential. MTT and clone formation assays were initially used to investigate the inhibitory effect of CMF on the viability of NCI-H1299 and LLC cells. The results of cell adhesion, wound healing, migration and Matrigel invasion assays in vitro indicated that NCI-H1299 cells (treated with 1, 3, 10 or 30 µg/ml CMF) and LLC cells (treated with 0.1, 0.3, 1 or 3 µg/ml CMF) demonstrated a concentration-dependent reduction in cell migration and invasion compared with the control. In vivo experiments demonstrated that the oral administration of CMF (65, 130 or 260 mg/kg) decreased the tumor growth and decreased the lung and liver metastasis in an LLC xenograft model, compared with untreated mice. Furthermore, western blot analysis was used to investigate the mechanism of the effect of CMF on the migration of NCI-H1299 cells and metastasis in the xenograft model. The results revealed that CMF may promote glycogen synthase kinase 3β (GSK-3β)-mediated degradation of β-catenin inhibited the phosphorylation of upstream protein kinase B (Akt), which resulted in the attenuation of the expression of matrix metalloproteinase (MMP)-2 and MMP-9. These results suggested that CMF may possess potential for the treatment of lung cancer metastasis via the Akt/GSK-3β/β-catenin pathway. |
format | Online Article Text |
id | pubmed-6256291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-62562912018-12-13 Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway Zhou, Qinqin Zhang, Zhang Song, Liyan Huang, Chunhua Cheng, Qi Bi, Sixue Hu, Xianjing Yu, Rongmin Oncol Lett Articles Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and caused cell cycle arrest in the S phase. The published results also demonstrated that CMF-induced apoptosis was involved in mitochondrial dysfunction. The aim of the present study was to investigate the anti-invasion and anti-metastasis effects of CMF in NCI-H1299 and Lewis lung cancer (LLC) cell lines, which have high metastatic potential. MTT and clone formation assays were initially used to investigate the inhibitory effect of CMF on the viability of NCI-H1299 and LLC cells. The results of cell adhesion, wound healing, migration and Matrigel invasion assays in vitro indicated that NCI-H1299 cells (treated with 1, 3, 10 or 30 µg/ml CMF) and LLC cells (treated with 0.1, 0.3, 1 or 3 µg/ml CMF) demonstrated a concentration-dependent reduction in cell migration and invasion compared with the control. In vivo experiments demonstrated that the oral administration of CMF (65, 130 or 260 mg/kg) decreased the tumor growth and decreased the lung and liver metastasis in an LLC xenograft model, compared with untreated mice. Furthermore, western blot analysis was used to investigate the mechanism of the effect of CMF on the migration of NCI-H1299 cells and metastasis in the xenograft model. The results revealed that CMF may promote glycogen synthase kinase 3β (GSK-3β)-mediated degradation of β-catenin inhibited the phosphorylation of upstream protein kinase B (Akt), which resulted in the attenuation of the expression of matrix metalloproteinase (MMP)-2 and MMP-9. These results suggested that CMF may possess potential for the treatment of lung cancer metastasis via the Akt/GSK-3β/β-catenin pathway. D.A. Spandidos 2018-12 2018-09-27 /pmc/articles/PMC6256291/ /pubmed/30546425 http://dx.doi.org/10.3892/ol.2018.9518 Text en Copyright: © Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Zhou, Qinqin Zhang, Zhang Song, Liyan Huang, Chunhua Cheng, Qi Bi, Sixue Hu, Xianjing Yu, Rongmin Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway |
title | Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway |
title_full | Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway |
title_fullStr | Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway |
title_full_unstemmed | Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway |
title_short | Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway |
title_sort | cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase b/glycogen synthase kinase 3β/β-catenin signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256291/ https://www.ncbi.nlm.nih.gov/pubmed/30546425 http://dx.doi.org/10.3892/ol.2018.9518 |
work_keys_str_mv | AT zhouqinqin cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT zhangzhang cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT songliyan cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT huangchunhua cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT chengqi cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT bisixue cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT huxianjing cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway AT yurongmin cordycepsmilitarisfractioninhibitstheinvasionandmetastasisoflungcancercellsthroughtheproteinkinasebglycogensynthasekinase3bbcateninsignalingpathway |