Cargando…

Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes

Nature's solar energy converters, the Photosystem I (PSI) and Photosystem II (PSII) reaction center proteins, flawlessly manage photon capture and conversion processes in plants, algae, and cyanobacteria to drive oxygenic water-splitting and carbon fixation. Herein, we utilize the native photos...

Descripción completa

Detalles Bibliográficos
Autores principales: Utschig, Lisa M., Soltau, Sarah R., Mulfort, Karen L., Niklas, Jens, Poluektov, Oleg G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256728/
https://www.ncbi.nlm.nih.gov/pubmed/30568774
http://dx.doi.org/10.1039/c8sc02841a
_version_ 1783374213623578624
author Utschig, Lisa M.
Soltau, Sarah R.
Mulfort, Karen L.
Niklas, Jens
Poluektov, Oleg G.
author_facet Utschig, Lisa M.
Soltau, Sarah R.
Mulfort, Karen L.
Niklas, Jens
Poluektov, Oleg G.
author_sort Utschig, Lisa M.
collection PubMed
description Nature's solar energy converters, the Photosystem I (PSI) and Photosystem II (PSII) reaction center proteins, flawlessly manage photon capture and conversion processes in plants, algae, and cyanobacteria to drive oxygenic water-splitting and carbon fixation. Herein, we utilize the native photosynthetic Z-scheme electron transport chain to drive hydrogen production from thylakoid membranes by directional electron transport to abiotic catalysts bound at the stromal end of PSI. Pt-nanoparticles readily self-assemble with PSI in spinach and cyanobacterial membranes as evidenced by light-driven H(2) production in the presence of a mediating electron shuttle protein and the sacrificial electron donor sodium ascorbate. EPR characterization confirms placement of the Pt-nanoparticles on the acceptor end of PSI. In the absence of sacrificial reductant, H(2) production at PSI occurs via coupling to light-induced PSII O(2) evolution as confirmed by correlation of catalytic activity to the presence or absence of the PSII inhibitor DCMU. To create a more sustainable system, first-row transition metal molecular cobaloxime and nickel diphosphine catalysts were found to perform photocatalysis when bound in situ to cyanobacterial thylakoid membranes. Thus, the self-assembly of abiotic catalysts with photosynthetic membranes demonstrates a tenable method for accomplishing solar overall water splitting to generate H(2), a renewable and clean fuel. This work benchmarks a significant advance toward improving photosynthetic efficiency for solar fuel production.
format Online
Article
Text
id pubmed-6256728
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-62567282018-12-19 Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes Utschig, Lisa M. Soltau, Sarah R. Mulfort, Karen L. Niklas, Jens Poluektov, Oleg G. Chem Sci Chemistry Nature's solar energy converters, the Photosystem I (PSI) and Photosystem II (PSII) reaction center proteins, flawlessly manage photon capture and conversion processes in plants, algae, and cyanobacteria to drive oxygenic water-splitting and carbon fixation. Herein, we utilize the native photosynthetic Z-scheme electron transport chain to drive hydrogen production from thylakoid membranes by directional electron transport to abiotic catalysts bound at the stromal end of PSI. Pt-nanoparticles readily self-assemble with PSI in spinach and cyanobacterial membranes as evidenced by light-driven H(2) production in the presence of a mediating electron shuttle protein and the sacrificial electron donor sodium ascorbate. EPR characterization confirms placement of the Pt-nanoparticles on the acceptor end of PSI. In the absence of sacrificial reductant, H(2) production at PSI occurs via coupling to light-induced PSII O(2) evolution as confirmed by correlation of catalytic activity to the presence or absence of the PSII inhibitor DCMU. To create a more sustainable system, first-row transition metal molecular cobaloxime and nickel diphosphine catalysts were found to perform photocatalysis when bound in situ to cyanobacterial thylakoid membranes. Thus, the self-assembly of abiotic catalysts with photosynthetic membranes demonstrates a tenable method for accomplishing solar overall water splitting to generate H(2), a renewable and clean fuel. This work benchmarks a significant advance toward improving photosynthetic efficiency for solar fuel production. Royal Society of Chemistry 2018-10-29 /pmc/articles/PMC6256728/ /pubmed/30568774 http://dx.doi.org/10.1039/c8sc02841a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0)
spellingShingle Chemistry
Utschig, Lisa M.
Soltau, Sarah R.
Mulfort, Karen L.
Niklas, Jens
Poluektov, Oleg G.
Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes
title Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes
title_full Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes
title_fullStr Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes
title_full_unstemmed Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes
title_short Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes
title_sort z-scheme solar water splitting via self-assembly of photosystem i-catalyst hybrids in thylakoid membranes
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256728/
https://www.ncbi.nlm.nih.gov/pubmed/30568774
http://dx.doi.org/10.1039/c8sc02841a
work_keys_str_mv AT utschiglisam zschemesolarwatersplittingviaselfassemblyofphotosystemicatalysthybridsinthylakoidmembranes
AT soltausarahr zschemesolarwatersplittingviaselfassemblyofphotosystemicatalysthybridsinthylakoidmembranes
AT mulfortkarenl zschemesolarwatersplittingviaselfassemblyofphotosystemicatalysthybridsinthylakoidmembranes
AT niklasjens zschemesolarwatersplittingviaselfassemblyofphotosystemicatalysthybridsinthylakoidmembranes
AT poluektovolegg zschemesolarwatersplittingviaselfassemblyofphotosystemicatalysthybridsinthylakoidmembranes