Cargando…
Artificial Immune System–Negative Selection Classification Algorithm (NSCA) for Four Class Electroencephalogram (EEG) Signals
Artificial immune systems (AIS) are intelligent algorithms derived from the principles inspired by the human immune system. In this study, electroencephalography (EEG) signals for four distinct motor movements of human limbs are detected and classified using a negative selection classification algor...
Autores principales: | Rashid, Nasir, Iqbal, Javaid, Mahmood, Fahad, Abid, Anam, Khan, Umar S., Tiwana, Mohsin I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256735/ https://www.ncbi.nlm.nih.gov/pubmed/30524257 http://dx.doi.org/10.3389/fnhum.2018.00439 |
Ejemplares similares
-
A novel framework for classification of two-class motor imagery EEG signals using logistic regression classification algorithm
por: Khan, Rabia Avais, et al.
Publicado: (2023) -
Design of Embedded System for Multivariate Classification of Finger and Thumb Movements Using EEG Signals for Control of Upper Limb Prosthesis
por: Rashid, Nasir, et al.
Publicado: (2018) -
Landscape Perception Identification and Classification Based on Electroencephalogram (EEG) Features
por: Wang, Yuting, et al.
Publicado: (2022) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
Introducing chaos behavior to kernel relevance vector machine (RVM) for four-class EEG classification
por: Dong, Enzeng, et al.
Publicado: (2018)