Cargando…

Preparation, Characterization and Adsorption Performance of a Novel Anionic Starch Microsphere

Neutral starch microspheres (NSMs) were synthesized by an inverse microemulsion technology with epichlorohydrin as a crosslinker and soluble starch as starting material. Anionic starch microspheres (ASMs) were prepared from NSMs by the secondary polymerization with chloroacetic acid as the anionic e...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Yati, Wei, Xiuzhi, Sun, Peng, Wan, Juanmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6257193/
https://www.ncbi.nlm.nih.gov/pubmed/20428085
http://dx.doi.org/10.3390/molecules15042872
Descripción
Sumario:Neutral starch microspheres (NSMs) were synthesized by an inverse microemulsion technology with epichlorohydrin as a crosslinker and soluble starch as starting material. Anionic starch microspheres (ASMs) were prepared from NSMs by the secondary polymerization with chloroacetic acid as the anionic etherifying agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and laser diffraction particle size analyzer were used to characterize the anionic starch microspheres. The results showed that structure of the microspheres was compact and the hardness of microspheres was great, and the average diameter of the product was about 75 µm. The anionic starch microspheres (ASMs) were used to adsorb methylene blue (MB) from aqueous solution. Effects of adsorption time, initial concentration of MB, and temperature on the adsorption of MB onto ASMs were studied, and the equilibrium and kinetics of the adsorption process were further investigated. It shows that ASMs can effectively remove MB from the solution. The adsorption equilibrium data correlates well with the Langmuir isotherm model compared with Frendlich isotherem model. The pseudo-first-order and pseudo-second-order kinetic models were applied to test the experimental data. The pseudo-second-order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order model. Temperature variations did not significantly affect the adsorption of MB onto ASMs.