Cargando…

Functional mechanisms underlie the emergence of a diverse range of plasticity phenomena

Diverse plasticity mechanisms are orchestrated to shape the spatiotemporal dynamics underlying brain functions. However, why these plasticity rules emerge and how their dynamics interact with neural activity to give rise to complex neural circuit dynamics remains largely unknown. Here we show that b...

Descripción completa

Detalles Bibliográficos
Autores principales: Henderson, James A., Gong, Pulin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258383/
https://www.ncbi.nlm.nih.gov/pubmed/30419014
http://dx.doi.org/10.1371/journal.pcbi.1006590
Descripción
Sumario:Diverse plasticity mechanisms are orchestrated to shape the spatiotemporal dynamics underlying brain functions. However, why these plasticity rules emerge and how their dynamics interact with neural activity to give rise to complex neural circuit dynamics remains largely unknown. Here we show that both Hebbian and homeostatic plasticity rules emerge from a functional perspective of neuronal dynamics whereby each neuron learns to encode its own activity in the population activity, so that the activity of the presynaptic neuron can be decoded from the activity of its postsynaptic neurons. We explain how a range of experimentally observed plasticity phenomena with widely separated time scales emerge from learning this encoding function, including STDP and its frequency dependence, and metaplasticity. We show that when implemented in neural circuits, these plasticity rules naturally give rise to essential neural response properties, including variable neural dynamics with balanced excitation and inhibition, and approximately log-normal distributions of synaptic strengths, while simultaneously encoding a complex real-world visual stimulus. These findings establish a novel function-based account of diverse plasticity mechanisms, providing a unifying framework relating plasticity, dynamics and neural computation.