Cargando…

Multiple infarcts and hemorrhages in the central nervous system of a dog with cerebral amyloid angiopathy: a case report

BACKGROUND: β-amyloid (Aβ) can accumulate in the brain of aged dogs, and within vessels walls, the disease is called cerebral amyloid angiopathy (CAA). In humans, Alzheimer’s disease and CAA are strongly correlated with cerebrovascular disease. However, in dogs, this association has not been extensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodrigues, Laís Limeira, Mesquita, Leonardo Pereira, Costa, Rafael Carneiro, Gomes, Raquel Gonçalves, Biihrer, Daniel Arrais, Maiorka, Paulo César
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258392/
https://www.ncbi.nlm.nih.gov/pubmed/30482198
http://dx.doi.org/10.1186/s12917-018-1700-0
Descripción
Sumario:BACKGROUND: β-amyloid (Aβ) can accumulate in the brain of aged dogs, and within vessels walls, the disease is called cerebral amyloid angiopathy (CAA). In humans, Alzheimer’s disease and CAA are strongly correlated with cerebrovascular disease. However, in dogs, this association has not been extensively studied yet. The present report highlights the pathological and clinical features of a concomitant cerebrovascular disease and amyloid precursor protein (APP) accumulation in the brain of a dog. CASE PRESENTATION: A female, 16-year-old, Standard Poodle with a one-year history of cognitive deficits presented with an acute onset of right-sided postural reaction deficit and circling, left-sided head tilt, positional nystagmus, and ataxia. Due to poor prognosis the dog was euthanized, and pathological examination of the brain revealed an acute lacunar infarction within the thalamus extending to rostral colliculus. Additional findings included subacute and chronic areas of ischemia throughout the brain and areas of hemorrhage within the medulla. Immunolabeling revealed APP deposition within intraparenchymal vessels of frontal, temporal and occipital cortex, hippocampus, diencephalon, mesencephalon and myelencephalon, besides meningeal vessels walls. Glial fibrillary acidic protein (GFAP) immunolabeling showed marked astrocytosis around the acute area of infarction and within chronic areas of ischemia. Histological examination of the brain along with immunohistochemistry results showed a concomitant APP, which is an Aβ precursor, accumulation within the neuroparenchyma and vessels (CAA) with histological evidences of a cerebrovascular disease in an aged dog. CONCLUSIONS: This report shows that APP accumulation in the brain can occur concomitantly to a severe cerebrovascular disease in a dog. Further studies are necessary to elucidate if cerebrovascular disease is associated with Aβ accumulation in the brain of dogs.