Cargando…
Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
BACKGROUND: Magnetic resonance imaging (MRI) of the knee is the preferred method for diagnosing knee injuries. However, interpretation of knee MRI is time-intensive and subject to diagnostic error and variability. An automated system for interpreting knee MRI could prioritize high-risk patients and...
Autores principales: | Bien, Nicholas, Rajpurkar, Pranav, Ball, Robyn L., Irvin, Jeremy, Park, Allison, Jones, Erik, Bereket, Michael, Patel, Bhavik N., Yeom, Kristen W., Shpanskaya, Katie, Halabi, Safwan, Zucker, Evan, Fanton, Gary, Amanatullah, Derek F., Beaulieu, Christopher F., Riley, Geoffrey M., Stewart, Russell J., Blankenberg, Francis G., Larson, David B., Jones, Ricky H., Langlotz, Curtis P., Ng, Andrew Y., Lungren, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258509/ https://www.ncbi.nlm.nih.gov/pubmed/30481176 http://dx.doi.org/10.1371/journal.pmed.1002699 |
Ejemplares similares
-
Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
por: Rajpurkar, Pranav, et al.
Publicado: (2018) -
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
Author Correction: Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
Deep Learning–Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model
por: Park, Allison, et al.
Publicado: (2019)