Cargando…
A Bayesian mixture modelling approach for spatial proteomics
Analysis of the spatial sub-cellular distribution of proteins is of vital importance to fully understand context specific protein function. Some proteins can be found with a single location within a cell, but up to half of proteins may reside in multiple locations, can dynamically re-localise, or re...
Autores principales: | Crook, Oliver M., Mulvey, Claire M., Kirk, Paul D. W., Lilley, Kathryn S., Gatto, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258510/ https://www.ncbi.nlm.nih.gov/pubmed/30481170 http://dx.doi.org/10.1371/journal.pcbi.1006516 |
Ejemplares similares
-
A Bioconductor workflow for the Bayesian analysis of spatial proteomics
por: Crook, Oliver M., et al.
Publicado: (2019) -
A Bioconductor workflow for processing and analysing spatial proteomics data
por: Breckels, Lisa M., et al.
Publicado: (2018) -
A Bayesian semi-parametric model for thermal proteome profiling
por: Fang, Siqi, et al.
Publicado: (2021) -
Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics
por: Geladaki, Aikaterini, et al.
Publicado: (2019) -
Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE
por: Crook, Oliver M., et al.
Publicado: (2022)