Cargando…
A deep learning model for the detection of both advanced and early glaucoma using fundus photography
PURPOSE: To build a deep learning model to diagnose glaucoma using fundus photography. DESIGN: Cross sectional case study Subjects, Participants and Controls: A total of 1,542 photos (786 normal controls, 467 advanced glaucoma and 289 early glaucoma patients) were obtained by fundus photography. MET...
Autores principales: | Ahn, Jin Mo, Kim, Sangsoo, Ahn, Kwang-Sung, Cho, Sung-Hoon, Lee, Kwan Bok, Kim, Ungsoo Samuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258525/ https://www.ncbi.nlm.nih.gov/pubmed/30481205 http://dx.doi.org/10.1371/journal.pone.0207982 |
Ejemplares similares
-
Correction: A deep learning model for the detection of both advanced and early glaucoma using fundus photography
por: Ahn, Jin Mo, et al.
Publicado: (2019) -
Deep Learning-Based Glaucoma Screening Using Regional RNFL Thickness in Fundus Photography
por: Yang, Hyunmo, et al.
Publicado: (2022) -
Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema
por: Ahn, Jin Mo, et al.
Publicado: (2019) -
Analysis of Fundus Photography and Fluorescein Angiography in Nonarteritic Anterior Ischemic Optic Neuropathy and Optic Neuritis
por: Kim, Min Kyung, et al.
Publicado: (2016) -
Development of a deep residual learning algorithm to screen for glaucoma from fundus photography
por: Shibata, Naoto, et al.
Publicado: (2018)