Cargando…
Prediction of findings at screening colonoscopy using a machine learning algorithm based on complete blood counts (ColonFlag)
Adenomatous polyps are a common precursor lesion for colorectal cancer. ColonFlag is a machine- learning-based algorithm that uses basic patient information and complete blood cell counts (CBC) to identify individuals at elevated risk of colorectal cancer for intensified screening. The purpose of th...
Autores principales: | Hilsden, Robert J., Heitman, Steven J., Mizrahi, Barak, Narod, Steven A., Goshen, Ran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6258529/ https://www.ncbi.nlm.nih.gov/pubmed/30481208 http://dx.doi.org/10.1371/journal.pone.0207848 |
Ejemplares similares
-
Use of ColonFlag score for prioritisation of endoscopy in colorectal cancer
por: Ayling, Ruth M, et al.
Publicado: (2021) -
Performance analysis of a machine learning flagging system used to identify a group of individuals at a high risk for colorectal cancer
por: Kinar, Yaron, et al.
Publicado: (2017) -
Predicting the presence of colon cancer in members of a health maintenance organisation by evaluating analytes from standard laboratory records
por: Goshen, Ran, et al.
Publicado: (2017) -
Scheduling rules for patients with diabetes mellitus that facilitate split-dosing improve the quality of bowel preparation for colonoscopy
por: Hilsden, Robert J., et al.
Publicado: (2017) -
A randomized clinical prospective trial comparing split-dose picosulfate/ magnesium citrate and polyethylene glycol for colonoscopy preparation
por: Rostom, Alaa, et al.
Publicado: (2019)