Cargando…

Effect of the Electron Transport Layer on the Interfacial Energy Barriers and Lifetime of R2R Printed Organic Solar Cell Modules

[Image: see text] Understanding the phenomena at interfaces is crucial for producing efficient and stable flexible organic solar cell modules. Minimized energy barriers enable efficient charge transfer, and good adhesion allows mechanical and environmental stability and thus increased lifetime. We u...

Descripción completa

Detalles Bibliográficos
Autores principales: Vilkman, Marja, Väisänen, Kaisa-Leena, Apilo, Pälvi, Po, Riccardo, Välimäki, Marja, Ylikunnari, Mari, Bernardi, Andrea, Pernu, Tapio, Corso, Gianni, Seitsonen, Jani, Heinilehto, Santtu, Ruokolainen, Janne, Hast, Jukka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6259049/
https://www.ncbi.nlm.nih.gov/pubmed/30506039
http://dx.doi.org/10.1021/acsaem.8b01040
Descripción
Sumario:[Image: see text] Understanding the phenomena at interfaces is crucial for producing efficient and stable flexible organic solar cell modules. Minimized energy barriers enable efficient charge transfer, and good adhesion allows mechanical and environmental stability and thus increased lifetime. We utilize here the inverted organic solar module stack and standard photoactive materials (a blend of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester) to study the interfaces in a pilot scale large-area roll-to-roll (R2R) process. The results show that the adhesion and work function of the zinc oxide nanoparticle based electron transport layer can be controlled in the R2R process, which allows optimization of performance and lifetime. Plasma treatment of zinc oxide (ZnO) nanoparticles and encapsulation-induced oxygen trapping will increase the absolute value of the ZnO work function, resulting in energy barriers and an S-shaped IV curve. However, light soaking will decrease the zinc oxide work function close to the original value and the S-shape can be recovered, leading to power conversion efficiencies above 3%. We present also an electrical simulation, which supports the results. Finally, we study the effect of plasma treatment in more detail and show that we can effectively remove the organic ligands around the ZnO nanoparticles from the printed layer in a R2R process, resulting in increased adhesion. This postprinting plasma treatment increases the lifetime of the R2R printed modules significantly with modules retaining 80% of their efficiency for ∼3000 h in accelerated conditions. Without plasma treatment, this efficiency level is reached in less than 1000 h.