Cargando…
Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis
BACKGROUND: Current repair techniques using cortical button fixation cannot achieve anatomic reconstruction of the distal biceps when performed through a single-incision anterior approach. We recently introduced a single-incision technique that uses flexible guide pins and flexible reamers to allow...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6259068/ https://www.ncbi.nlm.nih.gov/pubmed/30505874 http://dx.doi.org/10.1177/2325967118810523 |
_version_ | 1783374603503009792 |
---|---|
author | Tat, Jimmy Hart, Adam Cota, Adam Alsheikh, Khalid Behrends, Dominique Martineau, Paul A. |
author_facet | Tat, Jimmy Hart, Adam Cota, Adam Alsheikh, Khalid Behrends, Dominique Martineau, Paul A. |
author_sort | Tat, Jimmy |
collection | PubMed |
description | BACKGROUND: Current repair techniques using cortical button fixation cannot achieve anatomic reconstruction of the distal biceps when performed through a single-incision anterior approach. We recently introduced a single-incision technique that uses flexible guide pins and flexible reamers to allow for an insertion point on the tuberosity that more closely approximates the anatomic footprint of the distal biceps. PURPOSE: To investigate the safety of this technique with regard to nerve injury by comparing the guide pin position relative to the posterior interosseous nerve in 16 cadaveric elbows through use of a flexible versus rigid reamer. STUDY DESIGN: Descriptive laboratory study. METHODS: A standard single-incision anterior approach was performed in all cadaveric specimens, and the biceps tendon was dissected off the tuberosity. In 8 specimens, a traditional straight guide pin was used with a cortical button repair inserted through the bicipital tuberosity as close to the anatomic tendon footprint as possible. In the remaining 8 specimens, a curved guide was used to insert a flexible guide wire through the tuberosity within the native footprint. Dissection was carried out to measure the distance from the exit point of the guide pin to the posterior interosseous nerve. The 2 groups were compared by use of nonparametric Wilcoxon rank-sum test (significance threshold, P < .05). RESULTS: The mean distance of the guide wire to the posterior interosseous nerve was 11.6 mm (SD, 3.4 mm; range, 6.5-16.9 mm) in the standard rigid instrument group compared with 8.6 mm (SD, 4.2 mm; range, 1.0-13.9 mm) in the flexible instrumentation group; the difference between groups was not statistically different (P = .19; 95% CI, –1.1 to 7.1). CONCLUSION: Based on our cadaveric testing, the use of flexible instrumentation in a single-incision repair of the distal biceps presents with no significant difference in risk of damage to the posterior interosseous nerve compared with standard rigid instruments. In view of the relatively small number of specimens, however, some caution should be observed when applying these results clinically. CLINICAL RELEVANCE: As contemporary techniques in sports medicine strive to re-create each patient’s native anatomic characteristics, the use of flexible instruments allows for a more anatomic repair of the distal biceps, and our study demonstrates that it is a safe option. The next step is to evaluate its safety in vivo. |
format | Online Article Text |
id | pubmed-6259068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | SAGE Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-62590682018-11-30 Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis Tat, Jimmy Hart, Adam Cota, Adam Alsheikh, Khalid Behrends, Dominique Martineau, Paul A. Orthop J Sports Med Article BACKGROUND: Current repair techniques using cortical button fixation cannot achieve anatomic reconstruction of the distal biceps when performed through a single-incision anterior approach. We recently introduced a single-incision technique that uses flexible guide pins and flexible reamers to allow for an insertion point on the tuberosity that more closely approximates the anatomic footprint of the distal biceps. PURPOSE: To investigate the safety of this technique with regard to nerve injury by comparing the guide pin position relative to the posterior interosseous nerve in 16 cadaveric elbows through use of a flexible versus rigid reamer. STUDY DESIGN: Descriptive laboratory study. METHODS: A standard single-incision anterior approach was performed in all cadaveric specimens, and the biceps tendon was dissected off the tuberosity. In 8 specimens, a traditional straight guide pin was used with a cortical button repair inserted through the bicipital tuberosity as close to the anatomic tendon footprint as possible. In the remaining 8 specimens, a curved guide was used to insert a flexible guide wire through the tuberosity within the native footprint. Dissection was carried out to measure the distance from the exit point of the guide pin to the posterior interosseous nerve. The 2 groups were compared by use of nonparametric Wilcoxon rank-sum test (significance threshold, P < .05). RESULTS: The mean distance of the guide wire to the posterior interosseous nerve was 11.6 mm (SD, 3.4 mm; range, 6.5-16.9 mm) in the standard rigid instrument group compared with 8.6 mm (SD, 4.2 mm; range, 1.0-13.9 mm) in the flexible instrumentation group; the difference between groups was not statistically different (P = .19; 95% CI, –1.1 to 7.1). CONCLUSION: Based on our cadaveric testing, the use of flexible instrumentation in a single-incision repair of the distal biceps presents with no significant difference in risk of damage to the posterior interosseous nerve compared with standard rigid instruments. In view of the relatively small number of specimens, however, some caution should be observed when applying these results clinically. CLINICAL RELEVANCE: As contemporary techniques in sports medicine strive to re-create each patient’s native anatomic characteristics, the use of flexible instruments allows for a more anatomic repair of the distal biceps, and our study demonstrates that it is a safe option. The next step is to evaluate its safety in vivo. SAGE Publications 2018-11-27 /pmc/articles/PMC6259068/ /pubmed/30505874 http://dx.doi.org/10.1177/2325967118810523 Text en © The Author(s) 2018 http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License (http://www.creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
spellingShingle | Article Tat, Jimmy Hart, Adam Cota, Adam Alsheikh, Khalid Behrends, Dominique Martineau, Paul A. Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis |
title | Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis |
title_full | Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis |
title_fullStr | Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis |
title_full_unstemmed | Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis |
title_short | Distal Biceps Repair With Flexible Instrumentation and Risk of Posterior Interosseous Nerve Injury: A Cadaveric Analysis |
title_sort | distal biceps repair with flexible instrumentation and risk of posterior interosseous nerve injury: a cadaveric analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6259068/ https://www.ncbi.nlm.nih.gov/pubmed/30505874 http://dx.doi.org/10.1177/2325967118810523 |
work_keys_str_mv | AT tatjimmy distalbicepsrepairwithflexibleinstrumentationandriskofposteriorinterosseousnerveinjuryacadavericanalysis AT hartadam distalbicepsrepairwithflexibleinstrumentationandriskofposteriorinterosseousnerveinjuryacadavericanalysis AT cotaadam distalbicepsrepairwithflexibleinstrumentationandriskofposteriorinterosseousnerveinjuryacadavericanalysis AT alsheikhkhalid distalbicepsrepairwithflexibleinstrumentationandriskofposteriorinterosseousnerveinjuryacadavericanalysis AT behrendsdominique distalbicepsrepairwithflexibleinstrumentationandriskofposteriorinterosseousnerveinjuryacadavericanalysis AT martineaupaula distalbicepsrepairwithflexibleinstrumentationandriskofposteriorinterosseousnerveinjuryacadavericanalysis |