Cargando…

Metal artifact reduction on cervical CT images by deep residual learning

BACKGROUND: Cervical cancer is the fifth most common cancer among women, which is the third leading cause of cancer death in women worldwide. Brachytherapy is the most effective treatment for cervical cancer. For brachytherapy, computed tomography (CT) imaging is necessary since it conveys tissue de...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Xia, Wang, Jian, Tang, Fan, Zhong, Tao, Zhang, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260559/
https://www.ncbi.nlm.nih.gov/pubmed/30482231
http://dx.doi.org/10.1186/s12938-018-0609-y
Descripción
Sumario:BACKGROUND: Cervical cancer is the fifth most common cancer among women, which is the third leading cause of cancer death in women worldwide. Brachytherapy is the most effective treatment for cervical cancer. For brachytherapy, computed tomography (CT) imaging is necessary since it conveys tissue density information which can be used for dose planning. However, the metal artifacts caused by brachytherapy applicators remain a challenge for the automatic processing of image data for image-guided procedures or accurate dose calculations. Therefore, developing an effective metal artifact reduction (MAR) algorithm in cervical CT images is of high demand. METHODS: A novel residual learning method based on convolutional neural network (RL-ARCNN) is proposed to reduce metal artifacts in cervical CT images. For MAR, a dataset is generated by simulating various metal artifacts in the first step, which will be applied to train the CNN. This dataset includes artifact-insert, artifact-free, and artifact-residual images. Numerous image patches are extracted from the dataset for training on deep residual learning artifact reduction based on CNN (RL-ARCNN). Afterwards, the trained model can be used for MAR on cervical CT images. RESULTS: The proposed method provides a good MAR result with a PSNR of 38.09 on the test set of simulated artifact images. The PSNR of residual learning (38.09) is higher than that of ordinary learning (37.79) which shows that CNN-based residual images achieve favorable artifact reduction. Moreover, for a 512 × 512 image, the average removal artifact time is less than 1 s. CONCLUSIONS: The RL-ARCNN indicates that residual learning of CNN remarkably reduces metal artifacts and improves critical structure visualization and confidence of radiation oncologists in target delineation. Metal artifacts are eliminated efficiently free of sinogram data and complicated post-processing procedure.