Cargando…

Measuring ethylene in postharvest biology research using the laser-based ETD-300 ethylene detector

BACKGROUND: Ability to measure ethylene is an important aspect of postharvest management, as knowledge of endogenous ethylene production is used in assessing physiological status, while response of crops to exogenous ethylene informs efforts needed to control unwanted ripening. An ethylene monitorin...

Descripción completa

Detalles Bibliográficos
Autores principales: Gwanpua, Sunny George, Jabbar, Abdul, Tongonya, Jeritah, Nicholson, Sue, East, Andrew R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6260721/
https://www.ncbi.nlm.nih.gov/pubmed/30505339
http://dx.doi.org/10.1186/s13007-018-0372-x
Descripción
Sumario:BACKGROUND: Ability to measure ethylene is an important aspect of postharvest management, as knowledge of endogenous ethylene production is used in assessing physiological status, while response of crops to exogenous ethylene informs efforts needed to control unwanted ripening. An ethylene monitoring device with a laser-based photoacoustic detector, ETD-300, was recently developed by Sensor Sense B.V., Nijmegen, The Netherlands. In terms of performance, the ETD-300 is superior to all other current ethylene measurement devices, with a sensitivity of 0.3 nL L(−1), a response time of 5 s, and an ability to monitor ethylene in real time. Although the ETD-300 is relatively easy to operate, the performance and correctness of the data obtained depends on the choice of settings, which depends on the application. RESULTS: This article provides a description of different ways in which the ETD-300 can be used in postharvest research for monitoring ethylene production and ethylene presence in an environment. We provided guidelines on selecting the appropriate method (Continuous Flow, Stop and Flow, and Sample methods), and operational curves for deciding on suitable combination of free volume, flow rates, and period for the different measurement methods. CONCLUSIONS: Using these guidelines and operational curves, ETD-300 users can considerably reduce the measurement effort by limiting trial and error in establishing appropriate methodologies for their application. The guidelines also comment on accurate use of the ETD-300, as using the inappropriate settings could lead to erroneous measurements. Although these methodologies were developed primarily for postharvest application, they can be applied in other plant science research.