Cargando…
A deep learning approach to automatic detection of early glaucoma from visual fields
PURPOSE: To investigate the suitability of multi-scale spatial information in 30(o) visual fields (VF), computed from a Convolutional Neural Network (CNN) classifier, for early-glaucoma vs. control discrimination. METHOD: Two data sets of VFs acquired with the OCTOPUS 101 G1 program and the Humphrey...
Autores principales: | Kucur, Şerife Seda, Holló, Gábor, Sznitman, Raphael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261540/ https://www.ncbi.nlm.nih.gov/pubmed/30485270 http://dx.doi.org/10.1371/journal.pone.0206081 |
Ejemplares similares
-
Virtual Reality–Based and Conventional Visual Field Examination Comparison in Healthy and Glaucoma Patients
por: Stapelfeldt, Jan, et al.
Publicado: (2021) -
Automatic assessment of time-resolved OCT images for selective retina therapy
por: Zbinden, Sarah, et al.
Publicado: (2016) -
Sequentially optimized reconstruction strategy: A meta-strategy for perimetry testing
por: Kucur, Şerife Seda, et al.
Publicado: (2017) -
Comparative Study Between the SORS and Dynamic Strategy Visual Field Testing Methods on Glaucomatous and Healthy Subjects
por: Kucur, Şerife Seda, et al.
Publicado: (2020) -
Optical coherence tomography angiography in glaucoma: analysis of the vessel density—visual field sensitivity relationship
por: Holló, Gábor
Publicado: (2020)