Cargando…

Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential

The mechanisms by which probiotics may influence host physiology are still incompletely understood. Microbial endocrinology, a field representing the union of microbiology, endocrinology and neurobiology, has theorized that microorganisms have the capacity to serve as neurochemical delivery vehicles...

Descripción completa

Detalles Bibliográficos
Autores principales: Villageliú, Daniel, Lyte, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261559/
https://www.ncbi.nlm.nih.gov/pubmed/30485295
http://dx.doi.org/10.1371/journal.pone.0207038
Descripción
Sumario:The mechanisms by which probiotics may influence host physiology are still incompletely understood. Microbial endocrinology, a field representing the union of microbiology, endocrinology and neurobiology, has theorized that microorganisms have the capacity to serve as neurochemical delivery vehicles [1]. According to microbial endocrinology, neurochemicals can serve as a common language between host and bacterium, enabling bidirectional communication. We report herein the first demonstration that Enterococcus sp. has the capacity to produce dopamine in a gastrointestinal-like environment when supplied with the dopamine precursor L-3,4 dihydroxyphenylalanine (L-dopa). The results presented herein provide a means to select probiotics based on neurochemical-producing potential and suggest the possibility that probiotics containing E. faecium may serve to influence the host through dopaminergic pathways.