Cargando…
Low rank and sparsity constrained method for identifying overlapping functional brain networks
Analysis of functional magnetic resonance imaging (fMRI) data has revealed that brain regions can be grouped into functional brain networks (fBNs) or communities. A community in fMRI analysis signifies a group of brain regions coupled functionally with one another. In neuroimaging, functional connec...
Autores principales: | Aggarwal, Priya, Gupta, Anubha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261626/ https://www.ncbi.nlm.nih.gov/pubmed/30485369 http://dx.doi.org/10.1371/journal.pone.0208068 |
Ejemplares similares
-
The impact of sparsity in low-rank recurrent neural networks
por: Herbert, Elizabeth, et al.
Publicado: (2022) -
Sparsity and locally low rank regularization for MR fingerprinting
por: Lima da Cruz, Gastão, et al.
Publicado: (2019) -
Optimal Superpixel Kernel-Based Kernel Low-Rank and Sparsity Representation for Brain Tumour Segmentation
por: Ge, Ting, et al.
Publicado: (2022) -
A constrained singular value decomposition method that integrates sparsity and orthogonality
por: Guillemot, Vincent, et al.
Publicado: (2019) -
Multicomponent MR fingerprinting reconstruction using joint‐sparsity and low‐rank constraints
por: Nagtegaal, Martijn, et al.
Publicado: (2022)