Cargando…
Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells
Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261629/ https://www.ncbi.nlm.nih.gov/pubmed/30485360 http://dx.doi.org/10.1371/journal.pone.0208105 |
_version_ | 1783374983102201856 |
---|---|
author | Beldick, Stephanie R. Hong, James Altamentova, Svetlana Khazaei, Mohamad Hundal, Anisha Zavvarian, Mohammad-Masoud Rumajogee, Prakasham Chio, Jonathon Fehlings, Michael G. |
author_facet | Beldick, Stephanie R. Hong, James Altamentova, Svetlana Khazaei, Mohamad Hundal, Anisha Zavvarian, Mohammad-Masoud Rumajogee, Prakasham Chio, Jonathon Fehlings, Michael G. |
author_sort | Beldick, Stephanie R. |
collection | PubMed |
description | Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs. |
format | Online Article Text |
id | pubmed-6261629 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62616292018-12-19 Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells Beldick, Stephanie R. Hong, James Altamentova, Svetlana Khazaei, Mohamad Hundal, Anisha Zavvarian, Mohammad-Masoud Rumajogee, Prakasham Chio, Jonathon Fehlings, Michael G. PLoS One Research Article Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs. Public Library of Science 2018-11-28 /pmc/articles/PMC6261629/ /pubmed/30485360 http://dx.doi.org/10.1371/journal.pone.0208105 Text en © 2018 Beldick et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Beldick, Stephanie R. Hong, James Altamentova, Svetlana Khazaei, Mohamad Hundal, Anisha Zavvarian, Mohammad-Masoud Rumajogee, Prakasham Chio, Jonathon Fehlings, Michael G. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
title | Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
title_full | Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
title_fullStr | Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
title_full_unstemmed | Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
title_short | Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
title_sort | severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261629/ https://www.ncbi.nlm.nih.gov/pubmed/30485360 http://dx.doi.org/10.1371/journal.pone.0208105 |
work_keys_str_mv | AT beldickstephanier severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT hongjames severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT altamentovasvetlana severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT khazaeimohamad severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT hundalanisha severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT zavvarianmohammadmasoud severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT rumajogeeprakasham severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT chiojonathon severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells AT fehlingsmichaelg severecombinedimmunodeficientratscanbeusedtogenerateamodelofperinatalhypoxicischemicbraininjurytofacilitatestudiesofengraftedhumanneuralstemcells |