Cargando…

Static Range of Motion of the First Metatarsal in the Sagittal and Frontal Planes

The first metatarsal and medial cuneiform form an important functional unit in the foot, called “first ray”. The first ray normal range of motion (ROM) is difficult to quantify due to the number of joints that are involved. Several methods have previously been proposed. Controversy exists related to...

Descripción completa

Detalles Bibliográficos
Autores principales: Tavara-Vidalón, Sandra Priscila, Monge-Vera, Manuel Ángel, Lafuente-Sotillos, Guillermo, Domínguez-Maldonado, Gabriel, Munuera-Martínez, Pedro V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262388/
https://www.ncbi.nlm.nih.gov/pubmed/30469349
http://dx.doi.org/10.3390/jcm7110456
Descripción
Sumario:The first metatarsal and medial cuneiform form an important functional unit in the foot, called “first ray”. The first ray normal range of motion (ROM) is difficult to quantify due to the number of joints that are involved. Several methods have previously been proposed. Controversy exists related to normal movement of the first ray frontal plane accompanying that in the sagittal plane. The objective of this study was to investigate the ROM of the first ray in the sagittal and frontal planes in normal feet. Anterior-posterior radiographs were done of the feet of 40 healthy participants with the first ray in a neutral position, maximally dorsiflexed and maximally plantarflexed. They were digitalized and the distance between the tibial malleolus and the intersesamoid crest in the three positions mentioned was measured. The rotation of the first ray in these three positions was measured. A polynomic function that fits a curve describing the movement observed in the first ray was obtained using the least squares method. ROM of the first ray in the sagittal plane was 6.47 (SD 2.59) mm of dorsiflexion and 6.12 (SD 2.55) mm of plantarflexion. ROM in the frontal plane was 2.69 (SD 4.03) degrees of inversion during the dorsiflexion and 2.97 (SD 2.72) degrees during the plantarflexion. A second-degree equation was obtained, which represents the movement of the first ray. Passive dorsiflexion and plantarflexion of the first ray were accompanied by movements in the frontal plane: 0.45 degrees of movement were produced in the frontal plane for each millimeter of displacement in the sagittal plane. These findings might be useful for the future design of instruments for clinically quantifying first ray mobility.