Cargando…

RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet

SIMPLE SUMMARY: Grape pomace (GPO) is an important source of polyphenols which are known to have antioxidant properties. In the past decade, GPO has received some attention as a bioactive dietary component in farm animals’ diet. In this study, we have analyzed the whole-transcriptome of Friesian cal...

Descripción completa

Detalles Bibliográficos
Autores principales: Iannaccone, Marco, Elgendy, Ramy, Giantin, Mery, Martino, Camillo, Giansante, Daniele, Ianni, Andrea, Dacasto, Mauro, Martino, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262483/
https://www.ncbi.nlm.nih.gov/pubmed/30360570
http://dx.doi.org/10.3390/ani8110188
Descripción
Sumario:SIMPLE SUMMARY: Grape pomace (GPO) is an important source of polyphenols which are known to have antioxidant properties. In the past decade, GPO has received some attention as a bioactive dietary component in farm animals’ diet. In this study, we have analyzed the whole-transcriptome of Friesian calves fed with a GPO-supplemented diet using RNA-sequencing. We noted that the most affected pathway was the cholesterol lipid biosynthesis and this effect was consistent with a reduction in both serum cholesterol and lipid oxidation in the carcasses. This study provides evidence on the antioxidant property of GPO-supplemented diet, from a molecular biology standpoint. ABSTRACT: Grape pomace (GPO), the main by-product of the wine making process, is a rich source of polyphenols with potent antioxidant properties. Recently, GPO has emerged as a potential feed additive in livestock nutrition, with several reports describing its beneficial effects on animals’ overall health status or production traits. However, little is known about it from a molecular biology standpoint. In the present study, we report the first RNA sequencing-based whole-transcriptome profiling of Friesian calves fed with a GPO-supplemented diet. We identified 367 differentially expressed genes (p < 0.05) in the GPO-supplemented calves (n = 5), when compared with unsupplemented control group (n = 5). The pathway analysis showed that ‘cholesterol lipid biosynthesis’ was the most negatively-enriched (p < 0.001) pathway in the GPO-supplemented animals. In specific terms, five important genes coding for cholesterol biosynthesis enzymes, namely the Farnesyl-diphosphate Farnesyltransferase 1 (FDFT-1), Squalene Epoxidase (SQLE), NAD(P)-dependent Steroid Dehydrogenase-like (NSDHL), Methylsterol Monooxygenase (MSMO)-1, and Sterol-C5-desaturase (SC5D), two major transcription factors (the Sterol Regulatory Element-binding Transcription Factor 1 and 2), as well as the Low-Density Lipoprotein Receptor (LDLR), were all downregulated following GPO supplementation. Such an effect was mirrored by a reduction of blood cholesterol levels (p = 0.07) and a lowered (p < 0.001) Malondialdehyde (lipid oxidation marker) level in carcasses. We provide evidence on the effects of GPO-supplemented diets on the whole-transcriptome signature in veal calves, which mainly reflects an antioxidant activity.