Cargando…

Fetal growth restriction in a genetic model of sporadic Beckwith–Wiedemann syndrome

Beckwith–Wiedemann syndrome (BWS) is a complex imprinting disorder involving fetal overgrowth and placentomegaly, and is associated with a variety of genetic and epigenetic mutations affecting the expression of imprinted genes on human chromosome 11p15.5. Most BWS cases are linked to loss of methyla...

Descripción completa

Detalles Bibliográficos
Autores principales: Tunster, Simon J., Van de Pette, Mathew, Creeth, Hugo D. J., Lefebvre, Louis, John, Rosalind M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262809/
https://www.ncbi.nlm.nih.gov/pubmed/30158284
http://dx.doi.org/10.1242/dmm.035832
Descripción
Sumario:Beckwith–Wiedemann syndrome (BWS) is a complex imprinting disorder involving fetal overgrowth and placentomegaly, and is associated with a variety of genetic and epigenetic mutations affecting the expression of imprinted genes on human chromosome 11p15.5. Most BWS cases are linked to loss of methylation at the imprint control region 2 (ICR2) within this domain, which in mice regulates the silencing of several maternally expressed imprinted genes. Modelling this disorder in mice is confounded by the unique embryonic requirement for Ascl2, which is imprinted in mice but not in humans. To overcome this issue, we generated a novel model combining a truncation of distal chromosome 7 allele (DelTel7) with transgenic rescue of Ascl2 expression. This novel model recapitulated placentomegaly associated with BWS, but did not lead to fetal overgrowth.