Cargando…

Evaluating the individuality of animal‐habitat relationships

Examining the ways in which animals use habitat and select resources to satisfy their life history requirements has important implications for ecology, evolution, and conservation. The advent of radio‐tracking in the mid‐20th century greatly expanded the scope of animal‐habitat modeling. Thereafter,...

Descripción completa

Detalles Bibliográficos
Autores principales: Montgomery, Robert A., Redilla, Kyle M., Ortiz‐Calo, Waldemar, Smith, Trenton, Keller, Barbara, Millspaugh, Joshua J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262913/
https://www.ncbi.nlm.nih.gov/pubmed/30519415
http://dx.doi.org/10.1002/ece3.4554
_version_ 1783375196568158208
author Montgomery, Robert A.
Redilla, Kyle M.
Ortiz‐Calo, Waldemar
Smith, Trenton
Keller, Barbara
Millspaugh, Joshua J.
author_facet Montgomery, Robert A.
Redilla, Kyle M.
Ortiz‐Calo, Waldemar
Smith, Trenton
Keller, Barbara
Millspaugh, Joshua J.
author_sort Montgomery, Robert A.
collection PubMed
description Examining the ways in which animals use habitat and select resources to satisfy their life history requirements has important implications for ecology, evolution, and conservation. The advent of radio‐tracking in the mid‐20th century greatly expanded the scope of animal‐habitat modeling. Thereafter, it became common practice to aggregate telemetry data collected on a number of tagged individuals and fit one model describing resource selection at the population level. This convention, however, runs the risk of masking important individuality in the nature of associations between animals and their environment. Here, we investigated the importance of individual variation in animal‐habitat relationships via the study of a highly gregarious species. We modeled elk (Cervus elaphus) location data, collected from Global Positioning System (GPS) collars, using Bayesian discrete choice resource selection function (RSF) models. Using a high‐performance computing cluster, we batch‐processed these models at the level of each individual elk (n = 88) and evaluated the output with respect to: (a) the composition of parameters in the most supported models, (b) the estimates of the parameters featured in the global models, and (c) spatial maps of the predicted relative probabilities of use. We detected considerable individual variation across all three metrics. For instance, the most supported models varied with respect to parameter composition with a range of seven to 17 and an average of 14.4 parameters per individual elk. The estimates of the parameters featured in the global models also varied greatly across individual elk with little conformity detected across age or sex classes. Finally, spatial mapping illustrated stark differences in the predicted relative probabilities of use across individual elk. Our analysis identifies that animal‐habitat relationships, even among the most gregarious of species, can be highly variable. We discuss the implications of our results for ecology and present some guiding principles for the development of RSF models at the individual‐animal level.
format Online
Article
Text
id pubmed-6262913
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-62629132018-12-05 Evaluating the individuality of animal‐habitat relationships Montgomery, Robert A. Redilla, Kyle M. Ortiz‐Calo, Waldemar Smith, Trenton Keller, Barbara Millspaugh, Joshua J. Ecol Evol Original Research Examining the ways in which animals use habitat and select resources to satisfy their life history requirements has important implications for ecology, evolution, and conservation. The advent of radio‐tracking in the mid‐20th century greatly expanded the scope of animal‐habitat modeling. Thereafter, it became common practice to aggregate telemetry data collected on a number of tagged individuals and fit one model describing resource selection at the population level. This convention, however, runs the risk of masking important individuality in the nature of associations between animals and their environment. Here, we investigated the importance of individual variation in animal‐habitat relationships via the study of a highly gregarious species. We modeled elk (Cervus elaphus) location data, collected from Global Positioning System (GPS) collars, using Bayesian discrete choice resource selection function (RSF) models. Using a high‐performance computing cluster, we batch‐processed these models at the level of each individual elk (n = 88) and evaluated the output with respect to: (a) the composition of parameters in the most supported models, (b) the estimates of the parameters featured in the global models, and (c) spatial maps of the predicted relative probabilities of use. We detected considerable individual variation across all three metrics. For instance, the most supported models varied with respect to parameter composition with a range of seven to 17 and an average of 14.4 parameters per individual elk. The estimates of the parameters featured in the global models also varied greatly across individual elk with little conformity detected across age or sex classes. Finally, spatial mapping illustrated stark differences in the predicted relative probabilities of use across individual elk. Our analysis identifies that animal‐habitat relationships, even among the most gregarious of species, can be highly variable. We discuss the implications of our results for ecology and present some guiding principles for the development of RSF models at the individual‐animal level. John Wiley and Sons Inc. 2018-10-03 /pmc/articles/PMC6262913/ /pubmed/30519415 http://dx.doi.org/10.1002/ece3.4554 Text en © 2018 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Montgomery, Robert A.
Redilla, Kyle M.
Ortiz‐Calo, Waldemar
Smith, Trenton
Keller, Barbara
Millspaugh, Joshua J.
Evaluating the individuality of animal‐habitat relationships
title Evaluating the individuality of animal‐habitat relationships
title_full Evaluating the individuality of animal‐habitat relationships
title_fullStr Evaluating the individuality of animal‐habitat relationships
title_full_unstemmed Evaluating the individuality of animal‐habitat relationships
title_short Evaluating the individuality of animal‐habitat relationships
title_sort evaluating the individuality of animal‐habitat relationships
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262913/
https://www.ncbi.nlm.nih.gov/pubmed/30519415
http://dx.doi.org/10.1002/ece3.4554
work_keys_str_mv AT montgomeryroberta evaluatingtheindividualityofanimalhabitatrelationships
AT redillakylem evaluatingtheindividualityofanimalhabitatrelationships
AT ortizcalowaldemar evaluatingtheindividualityofanimalhabitatrelationships
AT smithtrenton evaluatingtheindividualityofanimalhabitatrelationships
AT kellerbarbara evaluatingtheindividualityofanimalhabitatrelationships
AT millspaughjoshuaj evaluatingtheindividualityofanimalhabitatrelationships