Cargando…

Enantioselective, Organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman Reactions: Stereochemical Issues

Conscious of the importance that stereochemical issues may have on the design of efficient organocatalyts for both Morita-Baylis-Hillman and aza-Morita-Baylis-Hillman reaction we have analyzed them in this minireview. The so-called standard reactions involve “naked” enolates which therefore should l...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansilla, Javier, Saá, José M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263197/
https://www.ncbi.nlm.nih.gov/pubmed/20335941
http://dx.doi.org/10.3390/molecules15020709
Descripción
Sumario:Conscious of the importance that stereochemical issues may have on the design of efficient organocatalyts for both Morita-Baylis-Hillman and aza-Morita-Baylis-Hillman reaction we have analyzed them in this minireview. The so-called standard reactions involve “naked” enolates which therefore should lead to the syn adducts as the major products, irrespective of the E, Z stereochemistry of the enolate. Accordingly, provided the second step is rate determining step, the design of successful bifunctional or polyfunctional catalysts has to consider the geometrical requirements imposed by the transition structures of the second step of these reactions. On the other hand, MBH and aza-MBH reactions co-catalyzed by (S)-proline and a secondary or tertiary amine (co-catalyst) involve the aldol-type condensation of either a 3-amino-substituted enamine, dienamine, or both, depending on the cases. A Zimmerman-Traxler mechanism defines the stereochemical issues regarding these co-catalyzed condensations which parallel those of the well established (S)-proline catalyzed aldol-like reactions.