Cargando…
Video-Based Person Re-Identification by an End-To-End Learning Architecture with Hybrid Deep Appearance-Temporal Feature
Video-based person re-identification is an important task with the challenges of lighting variation, low-resolution images, background clutter, occlusion, and human appearance similarity in the multi-camera visual sensor networks. In this paper, we propose a video-based person re-identification meth...
Autores principales: | Sun, Rui, Huang, Qiheng, Xia, Miaomiao, Zhang, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263398/ https://www.ncbi.nlm.nih.gov/pubmed/30380623 http://dx.doi.org/10.3390/s18113669 |
Ejemplares similares
-
Fusing Appearance and Spatio-Temporal Models for Person Re-Identification and Tracking
por: Chen, Andrew Tzer-Yeu, et al.
Publicado: (2020) -
End-to-end DSL architectures
por: Vermillion, Wayne C
Publicado: (2003) -
End-to-End Deep One-Class Learning for Anomaly Detection in UAV Video Stream
por: Hamdi, Slim, et al.
Publicado: (2021) -
Superpixel-Based Temporally Aligned Representation for Video-Based Person Re-Identification †
por: Gao, Changxin, et al.
Publicado: (2019) -
End-to-End Automatic Pronunciation Error Detection Based on Improved Hybrid CTC/Attention Architecture
por: Zhang, Long, et al.
Publicado: (2020)