Cargando…
A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition
Recently, modern smartphones equipped with a variety of embedded-sensors, such as accelerometers and gyroscopes, have been used as an alternative platform for human activity recognition (HAR), since they are cost-effective, unobtrusive and they facilitate real-time applications. However, the majorit...
Autores principales: | Almaslukh, Bandar, Artoli, Abdel Monim, Al-Muhtadi, Jalal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263408/ https://www.ncbi.nlm.nih.gov/pubmed/30388855 http://dx.doi.org/10.3390/s18113726 |
Ejemplares similares
-
Fast-HBR: Fast hash based duplicate read remover
por: Altayyar, Sami, et al.
Publicado: (2022) -
Smartphone Location Recognition: A Deep Learning-Based Approach
por: Klein, Itzik
Publicado: (2019) -
Deep Learning Approaches for Automatic Localization in Medical Images
por: Alaskar, H., et al.
Publicado: (2022) -
The use of deep learning for smartphone-based human activity recognition
por: Stampfler, Tristan, et al.
Publicado: (2023) -
A Fast and Robust Deep Convolutional Neural Networks for Complex Human Activity Recognition Using Smartphone
por: Qi, Wen, et al.
Publicado: (2019)