Cargando…
Student’s-t Mixture Regression-Based Robust Soft Sensor Development for Multimode Industrial Processes
Because of multiple manufacturing phases or operating conditions, a great many industrial processes work with multiple modes. In addition, it is inevitable that some measurements of industrial variables obtained through hardware sensors are incorrectly observed, recorded or imported into databases,...
Autores principales: | Wang, Jingbo, Shao, Weiming, Song, Zhihuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263413/ https://www.ncbi.nlm.nih.gov/pubmed/30445761 http://dx.doi.org/10.3390/s18113968 |
Ejemplares similares
-
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
por: Curreri, Francesco, et al.
Publicado: (2021) -
Graphical Evaluation of the Ridge-Type Robust Regression Estimators in Mixture Experiments
por: Erkoc, Ali, et al.
Publicado: (2014) -
A Multimodal Hydrogel Soft-Robotic Sensor for Multi-Functional Perception
por: Cheng, Yu, et al.
Publicado: (2021) -
Nonlinear Dynamic Soft Sensor Development with a Supervised
Hybrid CNN-LSTM Network for Industrial Processes
por: Zheng, Jiaqi, et al.
Publicado: (2022) -
Smart Soft Sensor Design with Hierarchical Sampling Strategy of Ensemble Gaussian Process Regression for Fermentation Processes
por: Sheng, Xiaochen, et al.
Publicado: (2020)