Cargando…

Reliable Positioning and mmWave Communication via Multi-Point Connectivity †

One of the key elements of future 5G and beyond mobile technology is millimeter-wave (mmWave) communications, which is targeted to extreme high-data rate services. Furthermore, combining the possibility of a wideband signal transmission with the capability of pencil-beamforming, mmWave technology is...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Dileep, Saloranta, Jani, Kaleva, Jarkko, Destino, Giuseppe, Tölli, Antti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263416/
https://www.ncbi.nlm.nih.gov/pubmed/30453572
http://dx.doi.org/10.3390/s18114001
Descripción
Sumario:One of the key elements of future 5G and beyond mobile technology is millimeter-wave (mmWave) communications, which is targeted to extreme high-data rate services. Furthermore, combining the possibility of a wideband signal transmission with the capability of pencil-beamforming, mmWave technology is key for accurate cellular-based positioning. However, it is also well-known that at the mmWave frequency band the radio channel is very sensitive to line-of-sight blockages giving rise to unstable connectivity and inefficient communication. In this paper, we tackle the blockage problem and propose a solution to increase the communication reliability by means of a coordinated multi-point reception. We also investigate the advantage of this solution in terms of positioning quality. More specifically, we describe a robust hybrid analog–digital receive beamforming strategy to combat the unavailability of dominant links. Numerical examples are provided to validate the efficiency of our proposed method.