Cargando…
LSRR-LA: An Anisotropy-Tolerant Localization Algorithm Based on Least Square Regularized Regression for Multi-Hop Wireless Sensor Networks
As is well known, multi-hop range-free localization algorithms demonstrate pretty good performance in isotropic networks in which sensor nodes distribute evenly and densely. However, these algorithms are easily affected by network topology, causing a significant decrease in positioning accuracy. To...
Autores principales: | Zhao, Wei, Shao, Fei, Ye, Song, Zheng, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263435/ https://www.ncbi.nlm.nih.gov/pubmed/30445789 http://dx.doi.org/10.3390/s18113974 |
Ejemplares similares
-
A new regularized least squares support vector regression for gene selection
por: Chen, Pei-Chun, et al.
Publicado: (2009) -
Quasi-least squares regression
por: Shults, Justine, et al.
Publicado: (2014) -
Kernel Recursive Least-Squares Temporal Difference Algorithms with Sparsification and Regularization
por: Zhang, Chunyuan, et al.
Publicado: (2016) -
Error analysis for [Formula: see text] -coefficient regularized moving least-square regression
por: Guo, Qin, et al.
Publicado: (2018) -
Robust Least-SquareLocalization Based on Relative Angular Matrix in Wireless Sensor Networks
por: Tian, Yuyang, et al.
Publicado: (2019)