Cargando…
Intravascular Photothermal Strain Imaging for Lipid Detection
Cardiovascular disease (CVD) is one of the major threats to humanity, accounting for one-third of the world’s deaths. For patients with high-risk CVD, plaque rupture can lead to critical condition. It is therefore important to determine the stability of the plaque and classify the patient’s risk lev...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263484/ https://www.ncbi.nlm.nih.gov/pubmed/30355999 http://dx.doi.org/10.3390/s18113609 |
_version_ | 1783375304009449472 |
---|---|
author | Choi, Changhoon Ahn, Joongho Kim, Chulhong |
author_facet | Choi, Changhoon Ahn, Joongho Kim, Chulhong |
author_sort | Choi, Changhoon |
collection | PubMed |
description | Cardiovascular disease (CVD) is one of the major threats to humanity, accounting for one-third of the world’s deaths. For patients with high-risk CVD, plaque rupture can lead to critical condition. It is therefore important to determine the stability of the plaque and classify the patient’s risk level. Lipid content is an important determinant of plaque stability. However, conventional intravascular imaging methods have limitations in finding lipids. Therefore, new intravascular imaging techniques for plaque risk assessment are urgently needed. In this study, a novel photothermal strain imaging (pTSI) was applied to an intravascular imaging system for detecting lipids in plaques. As a combination of thermal strain imaging and laser-induced heating, pTSI differentiates lipids from other tissues based on changes in ultrasound (US) velocity with temperature change. We designed an optical pathway to an intravascular ultrasound catheter to deliver 1210-nm laser and US simultaneously. To establish the feasibility of the intravascular pTSI system, we experimented with a tissue-mimicking phantom made of fat and gelatin. Due to the difference in the strain during laser heating, we can clearly distinguish fat and gelatin in the phantom. The result demonstrates that pTSI could be used with conventional intravascular imaging methods to detect the plaque lipid. |
format | Online Article Text |
id | pubmed-6263484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62634842018-12-12 Intravascular Photothermal Strain Imaging for Lipid Detection Choi, Changhoon Ahn, Joongho Kim, Chulhong Sensors (Basel) Article Cardiovascular disease (CVD) is one of the major threats to humanity, accounting for one-third of the world’s deaths. For patients with high-risk CVD, plaque rupture can lead to critical condition. It is therefore important to determine the stability of the plaque and classify the patient’s risk level. Lipid content is an important determinant of plaque stability. However, conventional intravascular imaging methods have limitations in finding lipids. Therefore, new intravascular imaging techniques for plaque risk assessment are urgently needed. In this study, a novel photothermal strain imaging (pTSI) was applied to an intravascular imaging system for detecting lipids in plaques. As a combination of thermal strain imaging and laser-induced heating, pTSI differentiates lipids from other tissues based on changes in ultrasound (US) velocity with temperature change. We designed an optical pathway to an intravascular ultrasound catheter to deliver 1210-nm laser and US simultaneously. To establish the feasibility of the intravascular pTSI system, we experimented with a tissue-mimicking phantom made of fat and gelatin. Due to the difference in the strain during laser heating, we can clearly distinguish fat and gelatin in the phantom. The result demonstrates that pTSI could be used with conventional intravascular imaging methods to detect the plaque lipid. MDPI 2018-10-24 /pmc/articles/PMC6263484/ /pubmed/30355999 http://dx.doi.org/10.3390/s18113609 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Choi, Changhoon Ahn, Joongho Kim, Chulhong Intravascular Photothermal Strain Imaging for Lipid Detection |
title | Intravascular Photothermal Strain Imaging for Lipid Detection |
title_full | Intravascular Photothermal Strain Imaging for Lipid Detection |
title_fullStr | Intravascular Photothermal Strain Imaging for Lipid Detection |
title_full_unstemmed | Intravascular Photothermal Strain Imaging for Lipid Detection |
title_short | Intravascular Photothermal Strain Imaging for Lipid Detection |
title_sort | intravascular photothermal strain imaging for lipid detection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6263484/ https://www.ncbi.nlm.nih.gov/pubmed/30355999 http://dx.doi.org/10.3390/s18113609 |
work_keys_str_mv | AT choichanghoon intravascularphotothermalstrainimagingforlipiddetection AT ahnjoongho intravascularphotothermalstrainimagingforlipiddetection AT kimchulhong intravascularphotothermalstrainimagingforlipiddetection |